类型对象¶
Python 对象系统中最重要的一个结构体也许是定义新类型的结构体: PyTypeObject 结构体。 类型对象可以使用任何 PyObject_* 或 PyType_* 函数来处理,但并未提供大多数 Python 应用程序会感兴趣的东西。 这些对象是对象行为的基础,所以它们对解释器本身及任何实现新类型的扩展模块都非常重要。
与大多数标准类型相比,类型对象相当大。这么大的原因是每个类型对象存储了大量的值,大部分是C函数指针,每个指针实现了类型功能的一小部分。本节将详细描述类型对象的字段。这些字段将按照它们在结构中出现的顺序进行描述。
除了下面的快速参考, 例子 小节提供了快速了解 PyTypeObject 的含义和用法的例子。
快速参考¶
"tp_方法槽"¶
PyTypeObject 槽 1 |
特殊方法/属性 |
信息 2 |
||||
|---|---|---|---|---|---|---|
O |
T |
D |
I |
|||
<R> |
const char * |
__name__ |
X |
X |
||
X |
X |
X |
||||
X |
X |
|||||
X |
X |
X |
||||
X |
X |
|||||
__getattribute__, __getattr__ |
G |
|||||
__setattr__, __delattr__ |
G |
|||||
% |
||||||
__repr__ |
X |
X |
X |
|||
% |
||||||
% |
||||||
% |
||||||
__hash__ |
X |
G |
||||
__call__ |
X |
X |
||||
__str__ |
X |
X |
||||
__getattribute__, __getattr__ |
X |
X |
G |
|||
__setattr__, __delattr__ |
X |
X |
G |
|||
% |
||||||
unsigned long |
X |
X |
? |
|||
const char * |
__doc__ |
X |
X |
|||
X |
G |
|||||
X |
G |
|||||
__lt__, __le__, __eq__, __ne__, __gt__, __ge__ |
X |
G |
||||
X |
? |
|||||
__iter__ |
X |
|||||
__next__ |
X |
|||||
|
X |
X |
||||
|
X |
|||||
|
X |
X |
||||
__base__ |
X |
|||||
|
__dict__ |
? |
||||
__get__ |
X |
|||||
__set__, __delete__ |
X |
|||||
X |
? |
|||||
__init__ |
X |
X |
X |
|||
X |
? |
? |
||||
__new__ |
X |
X |
? |
? |
||
X |
X |
? |
? |
|||
X |
X |
|||||
< |
|
__bases__ |
~ |
|||
< |
|
__mro__ |
~ |
|||
[ |
|
|||||
|
__subclasses__ |
|||||
|
||||||
( |
||||||
unsigned int |
||||||
__del__ |
X |
|||||
- 1
():括号中的插槽名称表示(实际上)已弃用。
<>: 尖括号内的名称在初始时应设为
NULL并被视为是只读的。[]: 方括号内的名称仅供内部使用。
<R> (作为前缀) 表示字段是必需的 (不能是
NULL)。- 2
列:
"O": 在
PyBaseObject_Type上设置"T": 在
PyType_Type上设置"D": 默认设置(如果方法槽被设置为NULL)
X - PyType_Ready sets this value if it is NULL ~ - PyType_Ready always sets this value (it should be NULL) ? - PyType_Ready may set this value depending on other slots Also see the inheritance column ("I")."I": 继承
X - type slot is inherited via *PyType_Ready* if defined with a *NULL* value % - the slots of the sub-struct are inherited individually G - inherited, but only in combination with other slots; see the slot's description ? - it's complicated; see the slot's description
注意,有些方法槽是通过普通属性查找链有效继承的。
子方法槽(方法域)¶
方法槽 |
特殊方法 |
|
|---|---|---|
__await__ |
||
__aiter__ |
||
__anext__ |
||
__add__ __radd__ |
||
__iadd__ |
||
__sub__ __rsub__ |
||
__isub__ |
||
__mul__ __rmul__ |
||
__imul__ |
||
__mod__ __rmod__ |
||
__imod__ |
||
__divmod__ __rdivmod__ |
||
__pow__ __rpow__ |
||
__ipow__ |
||
__neg__ |
||
__pos__ |
||
__abs__ |
||
__bool__ |
||
__invert__ |
||
__lshift__ __rlshift__ |
||
__ilshift__ |
||
__rshift__ __rrshift__ |
||
__irshift__ |
||
__and__ __rand__ |
||
__iand__ |
||
__xor__ __rxor__ |
||
__ixor__ |
||
__or__ __ror__ |
||
__ior__ |
||
__int__ |
||
void * |
||
__float__ |
||
__floordiv__ |
||
__ifloordiv__ |
||
__truediv__ |
||
__itruediv__ |
||
__index__ |
||
__matmul__ __rmatmul__ |
||
__imatmul__ |
||
__len__ |
||
__getitem__ |
||
__setitem__, __delitem__ |
||
__len__ |
||
__add__ |
||
__mul__ |
||
__getitem__ |
||
__setitem__ __delitem__ |
||
__contains__ |
||
__iadd__ |
||
__imul__ |
||
槽位 typedef¶
typedef |
参数类型 |
返回类型 |
|---|---|---|
|
||
void * |
void |
|
void * |
void |
|
int |
||
|
||
int |
||
|
|
|
PyObject *const char *
|
|
|
int |
||
|
||
int |
||
|
||
int |
||
|
Py_hash_t |
|
|
||
|
|
|
|
|
|
|
||
int |
||
void |
||
void * |
int |
|
PyObject * |
|
|
|
||
|
||
|
||
int |
||
int |
||
int |
请参阅 Slot Type typedefs 里有更多详细信息。
PyTypeObject 定义¶
PyTypeObject 的结构定义可以在 Include/object.h 中找到。 为了方便参考,此处复述了其中的定义:
typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
/* Methods to implement standard operations */
destructor tp_dealloc;
Py_ssize_t tp_vectorcall_offset;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */
reprfunc tp_repr;
/* Method suites for standard classes */
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
/* More standard operations (here for binary compatibility) */
hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;
/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;
/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;
const char *tp_doc; /* Documentation string */
/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;
/* delete references to contained objects */
inquiry tp_clear;
/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;
/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;
/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;
/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;
destructor tp_finalize;
vectorcallfunc tp_vectorcall;
} PyTypeObject;
PyObject 槽位¶
The type object structure extends the PyVarObject structure. The
ob_size field is used for dynamic types (created by type_new(),
usually called from a class statement). Note that PyType_Type (the
metatype) initializes tp_itemsize, which means that its instances (i.e.
type objects) must have the ob_size field.
-
Py_ssize_t PyObject.ob_refcnt¶
- Part of the Stable ABI.
This is the type object's reference count, initialized to
1by thePyObject_HEAD_INITmacro. Note that for statically allocated type objects, the type's instances (objects whoseob_typepoints back to the type) do not count as references. But for dynamically allocated type objects, the instances do count as references.继承:
子类型不继承此字段。
-
PyTypeObject *PyObject.ob_type¶
- Part of the Stable ABI.
这是类型的类型,换句话说就是元类型,它由宏
PyObject_HEAD_INIT的参数来做初始化,它的值一般情况下是&PyType_Type。可是为了使动态可载入扩展模块至少在Windows上可用,编译器会报错这是一个不可用的初始化。因此按照惯例传递NULL给宏PyObject_HEAD_INIT并且在模块的初始化函数开始时候其他任何操作之前初始化这个字段。典型做法是这样的:Foo_Type.ob_type = &PyType_Type;
This should be done before any instances of the type are created.
PyType_Ready()checks ifob_typeisNULL, and if so, initializes it to theob_typefield of the base class.PyType_Ready()will not change this field if it is non-zero.继承:
此字段会被子类型继承。
-
PyObject *PyObject._ob_next¶
-
PyObject *PyObject._ob_prev¶
这些字段仅在定义了宏
Py_TRACE_REFS时存在(参阅configure --with-trace-refs option)。由
PyObject_HEAD_INIT宏负责将它们初始化为NULL。对于 静态分配的对象,这两个字段始终为NULL。对于 动态分配的对象,这两个字段用于将对象链接到堆上所有活动对象的双向链表中。它们可用于各种调试目的。目前唯一的用途是
sys.getobjects()函数,在设置了环境变量PYTHONDUMPREFS时,打印运行结束时仍然活跃的对象。继承:
这些字段不会被子类型继承。
PyVarObject 槽位¶
-
Py_ssize_t PyVarObject.ob_size¶
- Part of the Stable ABI.
对于 静态分配的内存对象,它应该初始化为 0。对于 动态分配的类型对象,该字段具有特殊的内部含义。
继承:
子类型不继承此字段。
PyTypeObject 槽¶
Each slot has a section describing inheritance. If PyType_Ready()
may set a value when the field is set to NULL then there will also be
a "Default" section. (Note that many fields set on PyBaseObject_Type
and PyType_Type effectively act as defaults.)
-
const char *PyTypeObject.tp_name¶
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should be just the type name. If the module is a submodule of a package, the full package name is part of the full module name. For example, a type named
Tdefined in moduleMin subpackageQin packagePshould have thetp_nameinitializer"P.Q.M.T".对于 动态分配的类型对象,这应为类型名称,而模块名称将作为
'__module__'键的值显式地保存在类型字典中。For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made accessible as the
__module__attribute, and everything after the last dot is made accessible as the__name__attribute.If no dot is present, the entire
tp_namefield is made accessible as the__name__attribute, and the__module__attribute is undefined (unless explicitly set in the dictionary, as explained above). This means your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with pydoc.This field must not be
NULL. It is the only required field inPyTypeObject()(other than potentiallytp_itemsize).继承:
子类型不继承此字段。
-
Py_ssize_t PyTypeObject.tp_basicsize¶
-
Py_ssize_t PyTypeObject.tp_itemsize¶
These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero
tp_itemsizefield, types with variable-length instances have a non-zerotp_itemsizefield. For a type with fixed-length instances, all instances have the same size, given intp_basicsize.For a type with variable-length instances, the instances must have an
ob_sizefield, and the instance size istp_basicsizeplus N timestp_itemsize, where N is the "length" of the object. The value of N is typically stored in the instance'sob_sizefield. There are exceptions: for example, ints use a negativeob_sizeto indicate a negative number, and N isabs(ob_size)there. Also, the presence of anob_sizefield in the instance layout doesn't mean that the instance structure is variable-length (for example, the structure for the list type has fixed-length instances, yet those instances have a meaningfulob_sizefield).The basic size includes the fields in the instance declared by the macro
PyObject_HEADorPyObject_VAR_HEAD(whichever is used to declare the instance struct) and this in turn includes the_ob_prevand_ob_nextfields if they are present. This means that the only correct way to get an initializer for thetp_basicsizeis to use thesizeofoperator on the struct used to declare the instance layout. The basic size does not include the GC header size.A note about alignment: if the variable items require a particular alignment, this should be taken care of by the value of
tp_basicsize. Example: suppose a type implements an array ofdouble.tp_itemsizeissizeof(double). It is the programmer's responsibility thattp_basicsizeis a multiple ofsizeof(double)(assuming this is the alignment requirement fordouble).对于任何具有可变长度实例的类型,该字段必须不为
NULL。继承:
These fields are inherited separately by subtypes. If the base type has a non-zero
tp_itemsize, it is generally not safe to settp_itemsizeto a different non-zero value in a subtype (though this depends on the implementation of the base type).
-
destructor PyTypeObject.tp_dealloc¶
指向实例析构函数的指针。除非保证类型的实例永远不会被释放(就像单例对象
None和Ellipsis那样),否则必须定义这个函数。函数声明如下:void tp_dealloc(PyObject *self);
The destructor function is called by the
Py_DECREF()andPy_XDECREF()macros when the new reference count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing function corresponding to the allocation function used to allocate the buffer), and call the type'stp_freefunction. If the type is not subtypable (doesn't have thePy_TPFLAGS_BASETYPEflag bit set), it is permissible to call the object deallocator directly instead of viatp_free. The object deallocator should be the one used to allocate the instance; this is normallyPyObject_Del()if the instance was allocated usingPyObject_NeworPyObject_NewVar, orPyObject_GC_Del()if the instance was allocated usingPyObject_GC_NeworPyObject_GC_NewVar.If the type supports garbage collection (has the
Py_TPFLAGS_HAVE_GCflag bit set), the destructor should callPyObject_GC_UnTrack()before clearing any member fields.static void foo_dealloc(foo_object *self) { PyObject_GC_UnTrack(self); Py_CLEAR(self->ref); Py_TYPE(self)->tp_free((PyObject *)self); }
Finally, if the type is heap allocated (
Py_TPFLAGS_HEAPTYPE), the deallocator should release the owned reference to its type object (viaPy_DECREF()) after calling the type deallocator. In order to avoid dangling pointers, the recommended way to achieve this is:static void foo_dealloc(foo_object *self) { PyTypeObject *tp = Py_TYPE(self); // free references and buffers here tp->tp_free(self); Py_DECREF(tp); }
继承:
此字段会被子类型继承。
-
Py_ssize_t PyTypeObject.tp_vectorcall_offset¶
An optional offset to a per-instance function that implements calling the object using the vectorcall protocol, a more efficient alternative of the simpler
tp_call.This field is only used if the flag
Py_TPFLAGS_HAVE_VECTORCALLis set. If so, this must be a positive integer containing the offset in the instance of avectorcallfuncpointer.The vectorcallfunc pointer may be
NULL, in which case the instance behaves as ifPy_TPFLAGS_HAVE_VECTORCALLwas not set: calling the instance falls back totp_call.Any class that sets
Py_TPFLAGS_HAVE_VECTORCALLmust also settp_calland make sure its behaviour is consistent with the vectorcallfunc function. This can be done by setting tp_call toPyVectorcall_Call().警告
It is not recommended for mutable heap types to implement the vectorcall protocol. When a user sets
__call__in Python code, only tp_call is updated, likely making it inconsistent with the vectorcall function.在 3.8 版更改: Before version 3.8, this slot was named
tp_print. In Python 2.x, it was used for printing to a file. In Python 3.0 to 3.7, it was unused.继承:
This field is always inherited. However, the
Py_TPFLAGS_HAVE_VECTORCALLflag is not always inherited. If it's not, then the subclass won't use vectorcall, except whenPyVectorcall_Call()is explicitly called. This is in particular the case for types without thePy_TPFLAGS_IMMUTABLETYPEflag set (including subclasses defined in Python).
-
getattrfunc PyTypeObject.tp_getattr¶
一个指向获取属性字符串函数的可选指针。
该字段已弃用。当它被定义时,应该和
tp_getattro指向同一个函数,但接受一个C字符串参数表示属性名,而不是Python字符串对象。继承:
Group:
tp_getattr,tp_getattro该字段会被子类和
tp_getattro所继承:当子类型的tp_getattr和tp_getattro均为NULL时该子类型将从它的基类型同时继承tp_getattr和tp_getattro。
-
setattrfunc PyTypeObject.tp_setattr¶
一个指向函数以便设置和删除属性的可选指针。
该字段已弃用。当它被定义时,应该和
tp_setattro指向同一个函数,但接受一个C字符串参数表示属性名,而不是Python字符串对象。继承:
Group:
tp_setattr,tp_setattro该字段会被子类型和
tp_setattro所继承:当子类型的tp_setattr和tp_setattro均为NULL时该子类型将同时从它的基类型继承tp_setattr和tp_setattro。
-
PyAsyncMethods *PyTypeObject.tp_as_async¶
指向一个包含仅与在 C 层级上实现 awaitable 和 asynchronous iterator 协议的对象相关联的字段的附加结构体。 请参阅 Async Object Structures 了解详情。
3.5 新版功能: 在之前被称为
tp_compare和tp_reserved。继承:
tp_as_async字段不会被继承,但所包含的字段会被单独继承。
-
reprfunc PyTypeObject.tp_repr¶
一个实现了内置函数
repr()的函数的可选指针。该签名与
PyObject_Repr()的相同:PyObject *tp_repr(PyObject *self);
该函数必须返回一个字符串或 Unicode 对象。 在理想情况下,该函数应当返回一个字符串,当将其传给
eval()时,只要有合适的环境,就会返回一个具有相同值的对象。 如果这不可行,则它应当返回一个以'<'开头并以'>'结尾的可被用来推断出对象的类型和值的字符串。继承:
此字段会被子类型继承。
默认:
When this field is not set, a string of the form
<%s object at %p>is returned, where%sis replaced by the type name, and%pby the object's memory address.
-
PyNumberMethods *PyTypeObject.tp_as_number¶
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol. These fields are documented in Number Object Structures.
继承:
The
tp_as_numberfield is not inherited, but the contained fields are inherited individually.
-
PySequenceMethods *PyTypeObject.tp_as_sequence¶
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol. These fields are documented in Sequence Object Structures.
继承:
The
tp_as_sequencefield is not inherited, but the contained fields are inherited individually.
-
PyMappingMethods *PyTypeObject.tp_as_mapping¶
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol. These fields are documented in Mapping Object Structures.
继承:
The
tp_as_mappingfield is not inherited, but the contained fields are inherited individually.
-
hashfunc PyTypeObject.tp_hash¶
An optional pointer to a function that implements the built-in function
hash().The signature is the same as for
PyObject_Hash():Py_hash_t tp_hash(PyObject *);
The value
-1should not be returned as a normal return value; when an error occurs during the computation of the hash value, the function should set an exception and return-1.When this field is not set (and
tp_richcompareis not set), an attempt to take the hash of the object raisesTypeError. This is the same as setting it toPyObject_HashNotImplemented().This field can be set explicitly to
PyObject_HashNotImplemented()to block inheritance of the hash method from a parent type. This is interpreted as the equivalent of__hash__ = Noneat the Python level, causingisinstance(o, collections.Hashable)to correctly returnFalse. Note that the converse is also true - setting__hash__ = Noneon a class at the Python level will result in thetp_hashslot being set toPyObject_HashNotImplemented().继承:
Group:
tp_hash,tp_richcompareThis field is inherited by subtypes together with
tp_richcompare: a subtype inherits both oftp_richcompareandtp_hash, when the subtype'stp_richcompareandtp_hashare bothNULL.
-
ternaryfunc PyTypeObject.tp_call¶
An optional pointer to a function that implements calling the object. This should be
NULLif the object is not callable. The signature is the same as forPyObject_Call():PyObject *tp_call(PyObject *self, PyObject *args, PyObject *kwargs);
继承:
此字段会被子类型继承。
-
reprfunc PyTypeObject.tp_str¶
An optional pointer to a function that implements the built-in operation
str(). (Note thatstris a type now, andstr()calls the constructor for that type. This constructor callsPyObject_Str()to do the actual work, andPyObject_Str()will call this handler.)The signature is the same as for
PyObject_Str():PyObject *tp_str(PyObject *self);
The function must return a string or a Unicode object. It should be a "friendly" string representation of the object, as this is the representation that will be used, among other things, by the
print()function.继承:
此字段会被子类型继承。
默认:
When this field is not set,
PyObject_Repr()is called to return a string representation.
-
getattrofunc PyTypeObject.tp_getattro¶
An optional pointer to the get-attribute function.
The signature is the same as for
PyObject_GetAttr():PyObject *tp_getattro(PyObject *self, PyObject *attr);
It is usually convenient to set this field to
PyObject_GenericGetAttr(), which implements the normal way of looking for object attributes.继承:
Group:
tp_getattr,tp_getattroThis field is inherited by subtypes together with
tp_getattr: a subtype inherits bothtp_getattrandtp_getattrofrom its base type when the subtype'stp_getattrandtp_getattroare bothNULL.默认:
PyBaseObject_TypeusesPyObject_GenericGetAttr().
-
setattrofunc PyTypeObject.tp_setattro¶
一个指向函数以便设置和删除属性的可选指针。
The signature is the same as for
PyObject_SetAttr():int tp_setattro(PyObject *self, PyObject *attr, PyObject *value);
In addition, setting value to
NULLto delete an attribute must be supported. It is usually convenient to set this field toPyObject_GenericSetAttr(), which implements the normal way of setting object attributes.继承:
Group:
tp_setattr,tp_setattroThis field is inherited by subtypes together with
tp_setattr: a subtype inherits bothtp_setattrandtp_setattrofrom its base type when the subtype'stp_setattrandtp_setattroare bothNULL.默认:
PyBaseObject_TypeusesPyObject_GenericSetAttr().
-
PyBufferProcs *PyTypeObject.tp_as_buffer¶
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface. These fields are documented in Buffer Object Structures.
继承:
The
tp_as_bufferfield is not inherited, but the contained fields are inherited individually.
-
unsigned long PyTypeObject.tp_flags¶
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number,tp_as_sequence,tp_as_mapping, andtp_as_buffer) that were historically not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero orNULLvalue instead.继承:
Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if the extension structure is inherited, i.e. the base type's value of the flag bit is copied into the subtype together with a pointer to the extension structure. The
Py_TPFLAGS_HAVE_GCflag bit is inherited together with thetp_traverseandtp_clearfields, i.e. if thePy_TPFLAGS_HAVE_GCflag bit is clear in the subtype and thetp_traverseandtp_clearfields in the subtype exist and haveNULLvalues.默认:
PyBaseObject_TypeusesPy_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE.Bit Masks:
The following bit masks are currently defined; these can be ORed together using the
|operator to form the value of thetp_flagsfield. The macroPyType_HasFeature()takes a type and a flags value, tp and f, and checks whethertp->tp_flags & fis non-zero.-
Py_TPFLAGS_HEAPTYPE¶
This bit is set when the type object itself is allocated on the heap, for example, types created dynamically using
PyType_FromSpec(). In this case, theob_typefield of its instances is considered a reference to the type, and the type object is INCREF'ed when a new instance is created, and DECREF'ed when an instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the instance's ob_type gets INCREF'ed or DECREF'ed).继承:
???
-
Py_TPFLAGS_BASETYPE¶
当此类型可被用作另一个类型的基类型时该比特位将被设置。 如果该比特位被清除,则此类型将无法被子类型化(类似于 Java 中的 "final" 类)。
继承:
???
-
Py_TPFLAGS_READY¶
当此类型对象通过
PyType_Ready()被完全实例化时该比特位将被设置。继承:
???
-
Py_TPFLAGS_READYING¶
当
PyType_Ready()处在初始化此类型对象过程中时该比特位将被设置。继承:
???
-
Py_TPFLAGS_HAVE_GC¶
This bit is set when the object supports garbage collection. If this bit is set, instances must be created using
PyObject_GC_Newand destroyed usingPyObject_GC_Del(). More information in section 使对象类型支持循环垃圾回收. This bit also implies that the GC-related fieldstp_traverseandtp_clearare present in the type object.继承:
Group:
Py_TPFLAGS_HAVE_GC,tp_traverse,tp_clearThe
Py_TPFLAGS_HAVE_GCflag bit is inherited together with thetp_traverseandtp_clearfields, i.e. if thePy_TPFLAGS_HAVE_GCflag bit is clear in the subtype and thetp_traverseandtp_clearfields in the subtype exist and haveNULLvalues.
-
Py_TPFLAGS_DEFAULT¶
This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension structures. Currently, it includes the following bits:
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION.继承:
???
-
Py_TPFLAGS_METHOD_DESCRIPTOR¶
This bit indicates that objects behave like unbound methods.
If this flag is set for
type(meth), then:meth.__get__(obj, cls)(*args, **kwds)(withobjnot None) must be equivalent tometh(obj, *args, **kwds).meth.__get__(None, cls)(*args, **kwds)must be equivalent tometh(*args, **kwds).
This flag enables an optimization for typical method calls like
obj.meth(): it avoids creating a temporary "bound method" object forobj.meth.3.8 新版功能.
继承:
This flag is never inherited by types without the
Py_TPFLAGS_IMMUTABLETYPEflag set. For extension types, it is inherited whenevertp_descr_getis inherited.
-
Py_TPFLAGS_LONG_SUBCLASS¶
-
Py_TPFLAGS_LIST_SUBCLASS¶
-
Py_TPFLAGS_TUPLE_SUBCLASS¶
-
Py_TPFLAGS_BYTES_SUBCLASS¶
-
Py_TPFLAGS_UNICODE_SUBCLASS¶
-
Py_TPFLAGS_DICT_SUBCLASS¶
-
Py_TPFLAGS_BASE_EXC_SUBCLASS¶
-
Py_TPFLAGS_TYPE_SUBCLASS¶
These flags are used by functions such as
PyLong_Check()to quickly determine if a type is a subclass of a built-in type; such specific checks are faster than a generic check, likePyObject_IsInstance(). Custom types that inherit from built-ins should have theirtp_flagsset appropriately, or the code that interacts with such types will behave differently depending on what kind of check is used.
-
Py_TPFLAGS_HAVE_FINALIZE¶
当类型结构体中存在
tp_finalize槽位时会设置这个比特位。3.4 新版功能.
3.8 版后已移除: 此旗标已不再是必要的,因为解释器会假定类型结构体中总是存在
tp_finalize槽位。
-
Py_TPFLAGS_HAVE_VECTORCALL¶
当类实现了 vectorcall 协议 时会设置这个比特位。 请参阅
tp_vectorcall_offset了解详情。继承:
This bit is inherited for types with the
Py_TPFLAGS_IMMUTABLETYPEflag set, iftp_callis also inherited.3.9 新版功能.
-
Py_TPFLAGS_IMMUTABLETYPE¶
不可变的类型对象会设置这个比特位:类型属性无法被设置或删除。
PyType_Ready()会自动对 静态类型 应用这个旗标。继承:
这个旗标不会被继承。
3.10 新版功能.
-
Py_TPFLAGS_DISALLOW_INSTANTIATION¶
不允许创建此类型的实例:将
tp_new设为 NULL 并且不会在类型字符中创建__new__键。这个旗标必须在创建该类型之前设置,而不是在之后。 例如,它必须在该类型调用
PyType_Ready()之前被设置。The flag is set automatically on static types if
tp_baseis NULL or&PyBaseObject_Typeandtp_newis NULL.继承:
This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new(which is only possible via the C API).备注
To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an abstract base class), do not use this flag. Instead, make
tp_newonly succeed for subclasses.3.10 新版功能.
-
Py_TPFLAGS_MAPPING¶
This bit indicates that instances of the class may match mapping patterns when used as the subject of a
matchblock. It is automatically set when registering or subclassingcollections.abc.Mapping, and unset when registeringcollections.abc.Sequence.备注
Py_TPFLAGS_MAPPINGandPy_TPFLAGS_SEQUENCEare mutually exclusive; it is an error to enable both flags simultaneously.继承:
This flag is inherited by types that do not already set
Py_TPFLAGS_SEQUENCE.参见
PEP 634 —— 结构化模式匹配:规范
3.10 新版功能.
-
Py_TPFLAGS_SEQUENCE¶
This bit indicates that instances of the class may match sequence patterns when used as the subject of a
matchblock. It is automatically set when registering or subclassingcollections.abc.Sequence, and unset when registeringcollections.abc.Mapping.备注
Py_TPFLAGS_MAPPINGandPy_TPFLAGS_SEQUENCEare mutually exclusive; it is an error to enable both flags simultaneously.继承:
This flag is inherited by types that do not already set
Py_TPFLAGS_MAPPING.参见
PEP 634 —— 结构化模式匹配:规范
3.10 新版功能.
-
Py_TPFLAGS_HEAPTYPE¶
-
const char *PyTypeObject.tp_doc¶
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc__attribute on the type and instances of the type.继承:
This field is not inherited by subtypes.
-
traverseproc PyTypeObject.tp_traverse¶
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GCflag bit is set. The signature is:int tp_traverse(PyObject *self, visitproc visit, void *arg);
More information about Python's garbage collection scheme can be found in section 使对象类型支持循环垃圾回收.
The
tp_traversepointer is used by the garbage collector to detect reference cycles. A typical implementation of atp_traversefunction simply callsPy_VISIT()on each of the instance's members that are Python objects that the instance owns. For example, this is functionlocal_traverse()from the_threadextension module:static int local_traverse(localobject *self, visitproc visit, void *arg) { Py_VISIT(self->args); Py_VISIT(self->kw); Py_VISIT(self->dict); return 0; }
Note that
Py_VISIT()is called only on those members that can participate in reference cycles. Although there is also aself->keymember, it can only beNULLor a Python string and therefore cannot be part of a reference cycle.On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to visit it anyway just so the
gcmodule'sget_referents()function will include it.警告
When implementing
tp_traverse, only the members that the instance owns (by having strong references to them) must be visited. For instance, if an object supports weak references via thetp_weaklistslot, the pointer supporting the linked list (what tp_weaklist points to) must not be visited as the instance does not directly own the weak references to itself (the weakreference list is there to support the weak reference machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be removed even if the instance is still alive).Note that
Py_VISIT()requires the visit and arg parameters tolocal_traverse()to have these specific names; don't name them just anything.Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either visit
Py_TYPE(self), or delegate this responsibility by callingtp_traverseof another heap-allocated type (such as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.在 3.9 版更改: Heap-allocated types are expected to visit
Py_TYPE(self)intp_traverse. In earlier versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.继承:
Group:
Py_TPFLAGS_HAVE_GC,tp_traverse,tp_clearThis field is inherited by subtypes together with
tp_clearand thePy_TPFLAGS_HAVE_GCflag bit: the flag bit,tp_traverse, andtp_clearare all inherited from the base type if they are all zero in the subtype.
-
inquiry PyTypeObject.tp_clear¶
An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GCflag bit is set. The signature is:int tp_clear(PyObject *);
The
tp_clearmember function is used to break reference cycles in cyclic garbage detected by the garbage collector. Taken together, alltp_clearfunctions in the system must combine to break all reference cycles. This is subtle, and if in any doubt supply atp_clearfunction. For example, the tuple type does not implement atp_clearfunction, because it's possible to prove that no reference cycle can be composed entirely of tuples. Therefore thetp_clearfunctions of other types must be sufficient to break any cycle containing a tuple. This isn't immediately obvious, and there's rarely a good reason to avoid implementingtp_clear.Implementations of
tp_clearshould drop the instance's references to those of its members that may be Python objects, and set its pointers to those members toNULL, as in the following example:static int local_clear(localobject *self) { Py_CLEAR(self->key); Py_CLEAR(self->args); Py_CLEAR(self->kw); Py_CLEAR(self->dict); return 0; }
The
Py_CLEAR()macro should be used, because clearing references is delicate: the reference to the contained object must not be released (viaPy_DECREF()) until after the pointer to the contained object is set toNULL. This is because releasing the reference may cause the contained object to become trash, triggering a chain of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with the contained object). If it's possible for such code to reference self again, it's important that the pointer to the contained object beNULLat that time, so that self knows the contained object can no longer be used. ThePy_CLEAR()macro performs the operations in a safe order.Note that
tp_clearis not always called before an instance is deallocated. For example, when reference counting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved andtp_deallocis called directly.Because the goal of
tp_clearfunctions is to break reference cycles, it's not necessary to clear contained objects like Python strings or Python integers, which can't participate in reference cycles. On the other hand, it may be convenient to clear all contained Python objects, and write the type'stp_deallocfunction to invoketp_clear.More information about Python's garbage collection scheme can be found in section 使对象类型支持循环垃圾回收.
继承:
Group:
Py_TPFLAGS_HAVE_GC,tp_traverse,tp_clearThis field is inherited by subtypes together with
tp_traverseand thePy_TPFLAGS_HAVE_GCflag bit: the flag bit,tp_traverse, andtp_clearare all inherited from the base type if they are all zero in the subtype.
-
richcmpfunc PyTypeObject.tp_richcompare¶
An optional pointer to the rich comparison function, whose signature is:
PyObject *tp_richcompare(PyObject *self, PyObject *other, int op);
The first parameter is guaranteed to be an instance of the type that is defined by
PyTypeObject.The function should return the result of the comparison (usually
Py_TrueorPy_False). If the comparison is undefined, it must returnPy_NotImplemented, if another error occurred it must returnNULLand set an exception condition.The following constants are defined to be used as the third argument for
tp_richcompareand forPyObject_RichCompare():常量
对照
-
Py_LT¶
<-
Py_LE¶
<=-
Py_EQ¶
==-
Py_NE¶
!=-
Py_GT¶
>-
Py_GE¶
>=定义以下宏是为了简化编写丰富的比较函数:
-
Py_RETURN_RICHCOMPARE(VAL_A, VAL_B, op)¶
Return
Py_TrueorPy_Falsefrom the function, depending on the result of a comparison. VAL_A and VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The third argument specifies the requested operation, as forPyObject_RichCompare().The returned value is a new strong reference.
On error, sets an exception and returns
NULLfrom the function.3.7 新版功能.
继承:
Group:
tp_hash,tp_richcompareThis field is inherited by subtypes together with
tp_hash: a subtype inheritstp_richcompareandtp_hashwhen the subtype'stp_richcompareandtp_hashare bothNULL.默认:
PyBaseObject_Typeprovides atp_richcompareimplementation, which may be inherited. However, if onlytp_hashis defined, not even the inherited function is used and instances of the type will not be able to participate in any comparisons.-
Py_LT¶
-
Py_ssize_t PyTypeObject.tp_weaklistoffset¶
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs()and thePyWeakref_*functions. The instance structure needs to include a field of type PyObject* which is initialized toNULL.Do not confuse this field with
tp_weaklist; that is the list head for weak references to the type object itself.继承:
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.When a type defined by a class statement has no
__slots__declaration, and none of its base types are weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout and setting thetp_weaklistoffsetof that slot's offset.When a type's
__slots__declaration contains a slot named__weakref__, that slot becomes the weak reference list head for instances of the type, and the slot's offset is stored in the type'stp_weaklistoffset.When a type's
__slots__declaration does not contain a slot named__weakref__, the type inherits itstp_weaklistoffsetfrom its base type.
-
getiterfunc PyTypeObject.tp_iter¶
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the instances of this type are iterable (although sequences may be iterable without this function).
This function has the same signature as
PyObject_GetIter():PyObject *tp_iter(PyObject *self);
继承:
此字段会被子类型继承。
-
iternextfunc PyTypeObject.tp_iternext¶
An optional pointer to a function that returns the next item in an iterator. The signature is:
PyObject *tp_iternext(PyObject *self);
When the iterator is exhausted, it must return
NULL; aStopIterationexception may or may not be set. When another error occurs, it must returnNULLtoo. Its presence signals that the instances of this type are iterators.Iterator types should also define the
tp_iterfunction, and that function should return the iterator instance itself (not a new iterator instance).This function has the same signature as
PyIter_Next().继承:
此字段会被子类型继承。
-
struct PyMethodDef *PyTypeObject.tp_methods¶
An optional pointer to a static
NULL-terminated array ofPyMethodDefstructures, declaring regular methods of this type.For each entry in the array, an entry is added to the type's dictionary (see
tp_dictbelow) containing a method descriptor.继承:
This field is not inherited by subtypes (methods are inherited through a different mechanism).
-
struct PyMemberDef *PyTypeObject.tp_members¶
An optional pointer to a static
NULL-terminated array ofPyMemberDefstructures, declaring regular data members (fields or slots) of instances of this type.For each entry in the array, an entry is added to the type's dictionary (see
tp_dictbelow) containing a member descriptor.继承:
This field is not inherited by subtypes (members are inherited through a different mechanism).
-
struct PyGetSetDef *PyTypeObject.tp_getset¶
An optional pointer to a static
NULL-terminated array ofPyGetSetDefstructures, declaring computed attributes of instances of this type.For each entry in the array, an entry is added to the type's dictionary (see
tp_dictbelow) containing a getset descriptor.继承:
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).
-
PyTypeObject *PyTypeObject.tp_base¶
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance is supported; multiple inheritance require dynamically creating a type object by calling the metatype.
备注
Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to be "address constants". Function designators like
PyType_GenericNew(), with implicit conversion to a pointer, are valid C99 address constants.However, the unary '&' operator applied to a non-static variable like
PyBaseObject_Typeis not required to produce an address constant. Compilers may support this (gcc does), MSVC does not. Both compilers are strictly standard conforming in this particular behavior.Consequently,
tp_baseshould be set in the extension module's init function.继承:
This field is not inherited by subtypes (obviously).
默认:
This field defaults to
&PyBaseObject_Type(which to Python programmers is known as the typeobject).
-
PyObject *PyTypeObject.tp_dict¶
The type's dictionary is stored here by
PyType_Ready().This field should normally be initialized to
NULLbefore PyType_Ready is called; it may also be initialized to a dictionary containing initial attributes for the type. OncePyType_Ready()has initialized the type, extra attributes for the type may be added to this dictionary only if they don't correspond to overloaded operations (like__add__()).继承:
This field is not inherited by subtypes (though the attributes defined in here are inherited through a different mechanism).
默认:
If this field is
NULL,PyType_Ready()will assign a new dictionary to it.警告
It is not safe to use
PyDict_SetItem()on or otherwise modifytp_dictwith the dictionary C-API.
-
descrgetfunc PyTypeObject.tp_descr_get¶
An optional pointer to a "descriptor get" function.
函数的签名为:
PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);
继承:
此字段会被子类型继承。
-
descrsetfunc PyTypeObject.tp_descr_set¶
An optional pointer to a function for setting and deleting a descriptor's value.
函数的签名为:
int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);
The value argument is set to
NULLto delete the value.继承:
此字段会被子类型继承。
-
Py_ssize_t PyTypeObject.tp_dictoffset¶
If the instances of this type have a dictionary containing instance variables, this field is non-zero and contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr().Do not confuse this field with
tp_dict; that is the dictionary for attributes of the type object itself.If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to use, and should only be used when the instance structure contains a variable-length part. This is used for example to add an instance variable dictionary to subtypes of
strortuple. Note that thetp_basicsizefield should account for the dictionary added to the end in that case, even though the dictionary is not included in the basic object layout. On a system with a pointer size of 4 bytes,tp_dictoffsetshould be set to-4to indicate that the dictionary is at the very end of the structure.The
tp_dictoffsetshould be regarded as write-only. To get the pointer to the dictionary callPyObject_GenericGetDict(). CallingPyObject_GenericGetDict()may need to allocate memory for the dictionary, so it is may be more efficient to callPyObject_GetAttr()when accessing an attribute on the object.继承:
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always found via
tp_dictoffset, this should not be a problem.When a type defined by a class statement has no
__slots__declaration, and none of its base types has an instance variable dictionary, a dictionary slot is added to the instance layout and thetp_dictoffsetis set to that slot's offset.When a type defined by a class statement has a
__slots__declaration, the type inherits itstp_dictoffsetfrom its base type.(Adding a slot named
__dict__to the__slots__declaration does not have the expected effect, it just causes confusion. Maybe this should be added as a feature just like__weakref__though.)默认:
This slot has no default. For static types, if the field is
NULLthen no__dict__gets created for instances.
-
initproc PyTypeObject.tp_init¶
An optional pointer to an instance initialization function.
This function corresponds to the
__init__()method of classes. Like__init__(), it is possible to create an instance without calling__init__(), and it is possible to reinitialize an instance by calling its__init__()method again.函数的签名为:
int tp_init(PyObject *self, PyObject *args, PyObject *kwds);
The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword arguments of the call to
__init__().The
tp_initfunction, if notNULL, is called when an instance is created normally by calling its type, after the type'stp_newfunction has returned an instance of the type. If thetp_newfunction returns an instance of some other type that is not a subtype of the original type, notp_initfunction is called; iftp_newreturns an instance of a subtype of the original type, the subtype'stp_initis called.成功时返回
0,发生错误时则返回-1并在错误上设置一个异常。and sets an exception on error.继承:
此字段会被子类型继承。
默认:
对于 静态类型 来说该字段没有默认值。
-
allocfunc PyTypeObject.tp_alloc¶
指向一个实例分配函数的可选指针。
函数的签名为:
PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems);
继承:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
默认:
For dynamic subtypes, this field is always set to
PyType_GenericAlloc(), to force a standard heap allocation strategy.For static subtypes,
PyBaseObject_TypeusesPyType_GenericAlloc(). That is the recommended value for all statically defined types.
-
newfunc PyTypeObject.tp_new¶
An optional pointer to an instance creation function.
函数的签名为:
PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds);
The subtype argument is the type of the object being created; the args and kwds arguments represent positional and keyword arguments of the call to the type. Note that subtype doesn't have to equal the type whose
tp_newfunction is called; it may be a subtype of that type (but not an unrelated type).The
tp_newfunction should callsubtype->tp_alloc(subtype, nitems)to allocate space for the object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be ignored or repeated should be placed in thetp_inithandler. A good rule of thumb is that for immutable types, all initialization should take place intp_new, while for mutable types, most initialization should be deferred totp_init.Set the
Py_TPFLAGS_DISALLOW_INSTANTIATIONflag to disallow creating instances of the type in Python.继承:
This field is inherited by subtypes, except it is not inherited by static types whose
tp_baseisNULLor&PyBaseObject_Type.默认:
For static types this field has no default. This means if the slot is defined as
NULL, the type cannot be called to create new instances; presumably there is some other way to create instances, like a factory function.
-
freefunc PyTypeObject.tp_free¶
An optional pointer to an instance deallocation function. Its signature is:
void tp_free(void *self);
An initializer that is compatible with this signature is
PyObject_Free().继承:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)
默认:
In dynamic subtypes, this field is set to a deallocator suitable to match
PyType_GenericAlloc()and the value of thePy_TPFLAGS_HAVE_GCflag bit.For static subtypes,
PyBaseObject_TypeusesPyObject_Del().
-
inquiry PyTypeObject.tp_is_gc¶
可选的指向垃圾回收器所调用的函数的指针。
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient to look at the object's type's
tp_flagsfield, and check thePy_TPFLAGS_HAVE_GCflag bit. But some types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are not collectible. Such types should define this function; it should return1for a collectible instance, and0for a non-collectible instance. The signature is:int tp_is_gc(PyObject *self);
(The only example of this are types themselves. The metatype,
PyType_Type, defines this function to distinguish between statically and dynamically allocated types.)继承:
此字段会被子类型继承。
默认:
This slot has no default. If this field is
NULL,Py_TPFLAGS_HAVE_GCis used as the functional equivalent.
-
PyObject *PyTypeObject.tp_bases¶
Tuple of base types.
This field should be set to
NULLand treated as read-only. Python will fill it in when the type isinitialized.For dynamically created classes, the
Py_tp_basesslotcan be used instead of the bases argument ofPyType_FromSpecWithBases(). The argument form is preferred.警告
Multiple inheritance does not work well for statically defined types. If you set
tp_basesto a tuple, Python will not raise an error, but some slots will only be inherited from the first base.继承:
这个字段不会被继承。
-
PyObject *PyTypeObject.tp_mro¶
包含基类型的扩展集的元组,以类型本身开始并以
object作为结束,使用方法解析顺序。This field should be set to
NULLand treated as read-only. Python will fill it in when the type isinitialized.继承:
这个字段不会被继承;它是通过
PyType_Ready()计算得到的。
-
PyObject *PyTypeObject.tp_cache¶
尚未使用。 仅供内部使用。
继承:
这个字段不会被继承。
-
PyObject *PyTypeObject.tp_subclasses¶
由对子类的弱引用组成的列表。 仅供内部使用。
继承:
这个字段不会被继承。
-
PyObject *PyTypeObject.tp_weaklist¶
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.
继承:
这个字段不会被继承。
-
destructor PyTypeObject.tp_del¶
This field is deprecated. Use
tp_finalizeinstead.
-
unsigned int PyTypeObject.tp_version_tag¶
Used to index into the method cache. Internal use only.
继承:
这个字段不会被继承。
-
destructor PyTypeObject.tp_finalize¶
An optional pointer to an instance finalization function. Its signature is:
void tp_finalize(PyObject *self);
If
tp_finalizeis set, the interpreter calls it once when finalizing an instance. It is called either from the garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated. Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the object in a sane state.tp_finalizeshould not mutate the current exception status; therefore, a recommended way to write a non-trivial finalizer is:static void local_finalize(PyObject *self) { PyObject *error_type, *error_value, *error_traceback; /* Save the current exception, if any. */ PyErr_Fetch(&error_type, &error_value, &error_traceback); /* ... */ /* Restore the saved exception. */ PyErr_Restore(error_type, error_value, error_traceback); }
Also, note that, in a garbage collected Python,
tp_deallocmay be called from any Python thread, not just the thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate any assumptions of the library.继承:
此字段会被子类型继承。
3.4 新版功能.
在 3.8 版更改: Before version 3.8 it was necessary to set the
Py_TPFLAGS_HAVE_FINALIZEflags bit in order for this field to be used. This is no longer required.参见
"Safe object finalization" (PEP 442)
-
vectorcallfunc PyTypeObject.tp_vectorcall¶
Vectorcall function to use for calls of this type object. In other words, it is used to implement vectorcall for
type.__call__. Iftp_vectorcallisNULL, the default call implementation using__new__()and__init__()is used.继承:
这个字段不会被继承。
3.9 新版功能: (这个字段从 3.8 起即存在,但是从 3.9 开始投入使用)
Static Types¶
Traditionally, types defined in C code are static, that is,
a static PyTypeObject structure is defined directly in code
and initialized using PyType_Ready().
This results in types that are limited relative to types defined in Python:
Static types are limited to one base, i.e. they cannot use multiple inheritance.
Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the type object's attributes from Python.
Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific state.
Also, since PyTypeObject is only part of the Limited API as an opaque struct, any extension modules using static types must be
compiled for a specific Python minor version.
堆类型¶
An alternative to static types is heap-allocated types,
or heap types for short, which correspond closely to classes created by
Python's class statement. Heap types have the Py_TPFLAGS_HEAPTYPE
flag set.
This is done by filling a PyType_Spec structure and calling
PyType_FromSpec(), PyType_FromSpecWithBases(),
or PyType_FromModuleAndSpec().
Number Object Structures¶
-
type PyNumberMethods¶
This structure holds pointers to the functions which an object uses to implement the number protocol. Each function is used by the function of similar name documented in the 数字协议 section.
Here is the structure definition:
typedef struct { binaryfunc nb_add; binaryfunc nb_subtract; binaryfunc nb_multiply; binaryfunc nb_remainder; binaryfunc nb_divmod; ternaryfunc nb_power; unaryfunc nb_negative; unaryfunc nb_positive; unaryfunc nb_absolute; inquiry nb_bool; unaryfunc nb_invert; binaryfunc nb_lshift; binaryfunc nb_rshift; binaryfunc nb_and; binaryfunc nb_xor; binaryfunc nb_or; unaryfunc nb_int; void *nb_reserved; unaryfunc nb_float; binaryfunc nb_inplace_add; binaryfunc nb_inplace_subtract; binaryfunc nb_inplace_multiply; binaryfunc nb_inplace_remainder; ternaryfunc nb_inplace_power; binaryfunc nb_inplace_lshift; binaryfunc nb_inplace_rshift; binaryfunc nb_inplace_and; binaryfunc nb_inplace_xor; binaryfunc nb_inplace_or; binaryfunc nb_floor_divide; binaryfunc nb_true_divide; binaryfunc nb_inplace_floor_divide; binaryfunc nb_inplace_true_divide; unaryfunc nb_index; binaryfunc nb_matrix_multiply; binaryfunc nb_inplace_matrix_multiply; } PyNumberMethods;
备注
Binary and ternary functions must check the type of all their operands, and implement the necessary conversions (at least one of the operands is an instance of the defined type). If the operation is not defined for the given operands, binary and ternary functions must return
Py_NotImplemented, if another error occurred they must returnNULLand set an exception.备注
The
nb_reservedfield should always beNULL. It was previously callednb_long, and was renamed in Python 3.0.1.
-
binaryfunc PyNumberMethods.nb_add¶
-
binaryfunc PyNumberMethods.nb_subtract¶
-
binaryfunc PyNumberMethods.nb_multiply¶
-
binaryfunc PyNumberMethods.nb_remainder¶
-
binaryfunc PyNumberMethods.nb_divmod¶
-
ternaryfunc PyNumberMethods.nb_power¶
-
unaryfunc PyNumberMethods.nb_negative¶
-
unaryfunc PyNumberMethods.nb_positive¶
-
unaryfunc PyNumberMethods.nb_absolute¶
-
inquiry PyNumberMethods.nb_bool¶
-
unaryfunc PyNumberMethods.nb_invert¶
-
binaryfunc PyNumberMethods.nb_lshift¶
-
binaryfunc PyNumberMethods.nb_rshift¶
-
binaryfunc PyNumberMethods.nb_and¶
-
binaryfunc PyNumberMethods.nb_xor¶
-
binaryfunc PyNumberMethods.nb_or¶
-
unaryfunc PyNumberMethods.nb_int¶
-
void *PyNumberMethods.nb_reserved¶
-
unaryfunc PyNumberMethods.nb_float¶
-
binaryfunc PyNumberMethods.nb_inplace_add¶
-
binaryfunc PyNumberMethods.nb_inplace_subtract¶
-
binaryfunc PyNumberMethods.nb_inplace_multiply¶
-
binaryfunc PyNumberMethods.nb_inplace_remainder¶
-
ternaryfunc PyNumberMethods.nb_inplace_power¶
-
binaryfunc PyNumberMethods.nb_inplace_lshift¶
-
binaryfunc PyNumberMethods.nb_inplace_rshift¶
-
binaryfunc PyNumberMethods.nb_inplace_and¶
-
binaryfunc PyNumberMethods.nb_inplace_xor¶
-
binaryfunc PyNumberMethods.nb_inplace_or¶
-
binaryfunc PyNumberMethods.nb_floor_divide¶
-
binaryfunc PyNumberMethods.nb_true_divide¶
-
binaryfunc PyNumberMethods.nb_inplace_floor_divide¶
-
binaryfunc PyNumberMethods.nb_inplace_true_divide¶
-
unaryfunc PyNumberMethods.nb_index¶
-
binaryfunc PyNumberMethods.nb_matrix_multiply¶
-
binaryfunc PyNumberMethods.nb_inplace_matrix_multiply¶
Mapping Object Structures¶
-
type PyMappingMethods¶
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three members:
-
lenfunc PyMappingMethods.mp_length¶
This function is used by
PyMapping_Size()andPyObject_Size(), and has the same signature. This slot may be set toNULLif the object has no defined length.
-
binaryfunc PyMappingMethods.mp_subscript¶
This function is used by
PyObject_GetItem()andPySequence_GetSlice(), and has the same signature asPyObject_GetItem(). This slot must be filled for thePyMapping_Check()function to return1, it can beNULLotherwise.
-
objobjargproc PyMappingMethods.mp_ass_subscript¶
This function is used by
PyObject_SetItem(),PyObject_DelItem(),PySequence_SetSlice()andPySequence_DelSlice(). It has the same signature asPyObject_SetItem(), but v can also be set toNULLto delete an item. If this slot isNULL, the object does not support item assignment and deletion.
Sequence Object Structures¶
-
type PySequenceMethods¶
This structure holds pointers to the functions which an object uses to implement the sequence protocol.
-
lenfunc PySequenceMethods.sq_length¶
This function is used by
PySequence_Size()andPyObject_Size(), and has the same signature. It is also used for handling negative indices via thesq_itemand thesq_ass_itemslots.
-
binaryfunc PySequenceMethods.sq_concat¶
This function is used by
PySequence_Concat()and has the same signature. It is also used by the+operator, after trying the numeric addition via thenb_addslot.
-
ssizeargfunc PySequenceMethods.sq_repeat¶
This function is used by
PySequence_Repeat()and has the same signature. It is also used by the*operator, after trying numeric multiplication via thenb_multiplyslot.
-
ssizeargfunc PySequenceMethods.sq_item¶
This function is used by
PySequence_GetItem()and has the same signature. It is also used byPyObject_GetItem(), after trying the subscription via themp_subscriptslot. This slot must be filled for thePySequence_Check()function to return1, it can beNULLotherwise.Negative indexes are handled as follows: if the
sq_lengthslot is filled, it is called and the sequence length is used to compute a positive index which is passed tosq_item. Ifsq_lengthisNULL, the index is passed as is to the function.
-
ssizeobjargproc PySequenceMethods.sq_ass_item¶
This function is used by
PySequence_SetItem()and has the same signature. It is also used byPyObject_SetItem()andPyObject_DelItem(), after trying the item assignment and deletion via themp_ass_subscriptslot. This slot may be left toNULLif the object does not support item assignment and deletion.
-
objobjproc PySequenceMethods.sq_contains¶
This function may be used by
PySequence_Contains()and has the same signature. This slot may be left toNULL, in this casePySequence_Contains()simply traverses the sequence until it finds a match.
-
binaryfunc PySequenceMethods.sq_inplace_concat¶
This function is used by
PySequence_InPlaceConcat()and has the same signature. It should modify its first operand, and return it. This slot may be left toNULL, in this casePySequence_InPlaceConcat()will fall back toPySequence_Concat(). It is also used by the augmented assignment+=, after trying numeric in-place addition via thenb_inplace_addslot.
-
ssizeargfunc PySequenceMethods.sq_inplace_repeat¶
This function is used by
PySequence_InPlaceRepeat()and has the same signature. It should modify its first operand, and return it. This slot may be left toNULL, in this casePySequence_InPlaceRepeat()will fall back toPySequence_Repeat(). It is also used by the augmented assignment*=, after trying numeric in-place multiplication via thenb_inplace_multiplyslot.
Buffer Object Structures¶
-
type PyBufferProcs¶
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an exporter object can expose its internal data to consumer objects.
-
getbufferproc PyBufferProcs.bf_getbuffer¶
The signature of this function is:
int (PyObject *exporter, Py_buffer *view, int flags);
Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this function MUST take these steps:
Check if the request can be met. If not, raise
BufferError, set view->obj toNULLand return-1.Fill in the requested fields.
Increment an internal counter for the number of exports.
Set view->obj to exporter and increment view->obj.
Return
0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:
Re-export: Each member of the tree acts as the exporting object and sets view->obj to a new reference to itself.
Redirect: The buffer request is redirected to the root object of the tree. Here, view->obj will be a new reference to the root object.
The individual fields of view are described in section Buffer structure, the rules how an exporter must react to specific requests are in section Buffer request types.
All memory pointed to in the
Py_bufferstructure belongs to the exporter and must remain valid until there are no consumers left.format,shape,strides,suboffsetsandinternalare read-only for the consumer.PyBuffer_FillInfo()provides an easy way of exposing a simple bytes buffer while dealing correctly with all request types.PyObject_GetBuffer()is the interface for the consumer that wraps this function.
-
releasebufferproc PyBufferProcs.bf_releasebuffer¶
The signature of this function is:
void (PyObject *exporter, Py_buffer *view);
Handle a request to release the resources of the buffer. If no resources need to be released,
PyBufferProcs.bf_releasebuffermay beNULL. Otherwise, a standard implementation of this function will take these optional steps:Decrement an internal counter for the number of exports.
If the counter is
0, free all memory associated with view.
The exporter MUST use the
internalfield to keep track of buffer-specific resources. This field is guaranteed to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.This function MUST NOT decrement view->obj, since that is done automatically in
PyBuffer_Release()(this scheme is useful for breaking reference cycles).PyBuffer_Release()is the interface for the consumer that wraps this function.
Async Object Structures¶
3.5 新版功能.
-
type PyAsyncMethods¶
This structure holds pointers to the functions required to implement awaitable and asynchronous iterator objects.
Here is the structure definition:
typedef struct { unaryfunc am_await; unaryfunc am_aiter; unaryfunc am_anext; sendfunc am_send; } PyAsyncMethods;
-
unaryfunc PyAsyncMethods.am_await¶
The signature of this function is:
PyObject *am_await(PyObject *self);
The returned object must be an iterator, i.e.
PyIter_Check()must return1for it.This slot may be set to
NULLif an object is not an awaitable.
-
unaryfunc PyAsyncMethods.am_aiter¶
The signature of this function is:
PyObject *am_aiter(PyObject *self);
Must return an asynchronous iterator object. See
__anext__()for details.This slot may be set to
NULLif an object does not implement asynchronous iteration protocol.
-
unaryfunc PyAsyncMethods.am_anext¶
The signature of this function is:
PyObject *am_anext(PyObject *self);
Must return an awaitable object. See
__anext__()for details. This slot may be set toNULL.
-
sendfunc PyAsyncMethods.am_send¶
The signature of this function is:
PySendResult am_send(PyObject *self, PyObject *arg, PyObject **result);
See
PyIter_Send()for details. This slot may be set toNULL.3.10 新版功能.
Slot Type typedefs¶
-
typedef PyObject *(*allocfunc)(PyTypeObject *cls, Py_ssize_t nitems)¶
- Part of the Stable ABI.
The purpose of this function is to separate memory allocation from memory initialization. It should return a pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but with
ob_refcntset to1andob_typeset to the type argument. If the type'stp_itemsizeis non-zero, the object'sob_sizefield should be initialized to nitems and the length of the allocated memory block should betp_basicsize + nitems*tp_itemsize, rounded up to a multiple ofsizeof(void*); otherwise, nitems is not used and the length of the block should betp_basicsize.This function should not do any other instance initialization, not even to allocate additional memory; that should be done by
tp_new.
-
typedef void (*destructor)(PyObject*)¶
- Part of the Stable ABI.
-
typedef PyObject *(*reprfunc)(PyObject*)¶
- Part of the Stable ABI.
参见
tp_repr。
-
typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)¶
- Part of the Stable ABI.
返回对象的指定属性的值。
-
typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)¶
- Part of the Stable ABI.
Set the value of the named attribute for the object. The value argument is set to
NULLto delete the attribute.
-
typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)¶
- Part of the Stable ABI.
返回对象的指定属性的值。
参见
tp_getattro。
-
typedef int (*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)¶
- Part of the Stable ABI.
Set the value of the named attribute for the object. The value argument is set to
NULLto delete the attribute.参见
tp_setattro。
-
typedef PyObject *(*descrgetfunc)(PyObject*, PyObject*, PyObject*)¶
- Part of the Stable ABI.
参见
tp_descr_get。
-
typedef int (*descrsetfunc)(PyObject*, PyObject*, PyObject*)¶
- Part of the Stable ABI.
参见
tp_descr_set。
-
typedef Py_hash_t (*hashfunc)(PyObject*)¶
- Part of the Stable ABI.
参见
tp_hash。
-
typedef PyObject *(*richcmpfunc)(PyObject*, PyObject*, int)¶
- Part of the Stable ABI.
参见
tp_richcompare。
-
typedef PyObject *(*getiterfunc)(PyObject*)¶
- Part of the Stable ABI.
参见
tp_iter。
-
typedef PyObject *(*iternextfunc)(PyObject*)¶
- Part of the Stable ABI.
参见
tp_iternext。
-
typedef Py_ssize_t (*lenfunc)(PyObject*)¶
- Part of the Stable ABI.
-
typedef PyObject *(*unaryfunc)(PyObject*)¶
- Part of the Stable ABI.
-
typedef PyObject *(*binaryfunc)(PyObject*, PyObject*)¶
- Part of the Stable ABI.
-
typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)¶
- Part of the Stable ABI.
-
typedef int (*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)¶
- Part of the Stable ABI.
-
typedef int (*objobjproc)(PyObject*, PyObject*)¶
- Part of the Stable ABI.
-
typedef int (*objobjargproc)(PyObject*, PyObject*, PyObject*)¶
- Part of the Stable ABI.
例子¶
下面是一些 Python 类型定义的简单示例。 其中包括你可能会遇到的通常用法。 有些演示了令人困惑的边际情况。 要获取更多示例、实践信息以及教程,请参阅 自定义扩展类型:教程 和 定义扩展类型:已分类主题。
一个基本的 静态类型:
typedef struct {
PyObject_HEAD
const char *data;
} MyObject;
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_new = myobj_new,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,
};
你可能还会看到带有更繁琐的初始化器的较旧代码(特别是在 CPython 代码库中):
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"mymod.MyObject", /* tp_name */
sizeof(MyObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)myobj_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
(reprfunc)myobj_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
PyDoc_STR("My objects"), /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
myobj_new, /* tp_new */
};
一个支持弱引用、实例字典和哈希运算的类型:
typedef struct {
PyObject_HEAD
const char *data;
PyObject *inst_dict;
PyObject *weakreflist;
} MyObject;
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_weaklistoffset = offsetof(MyObject, weakreflist),
.tp_dictoffset = offsetof(MyObject, inst_dict),
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = myobj_new,
.tp_traverse = (traverseproc)myobj_traverse,
.tp_clear = (inquiry)myobj_clear,
.tp_alloc = PyType_GenericNew,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,
.tp_hash = (hashfunc)myobj_hash,
.tp_richcompare = PyBaseObject_Type.tp_richcompare,
};
A str subclass that cannot be subclassed and cannot be called
to create instances (e.g. uses a separate factory func) using
Py_TPFLAGS_DISALLOW_INSTANTIATION flag:
typedef struct {
PyUnicodeObject raw;
char *extra;
} MyStr;
static PyTypeObject MyStr_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof(MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,
};
最简单的固定长度实例 静态类型:
typedef struct {
PyObject_HEAD
} MyObject;
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
};
The simplest static type with variable-length instances:
typedef struct {
PyObject_VAR_HEAD
const char *data[1];
} MyObject;
static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject) - sizeof(char *),
.tp_itemsize = sizeof(char *),
};