typing
—— 对类型提示的支持¶
3.5 新版功能.
源码: Lib/typing.py
备注
Python 运行时不强制要求函数与变量类型注解。它们可用于类型检查器、IDE、错误检查器等第三方工具。
本模块提供对类型提示的运行时支持。对于类型系统的原始说明,请参阅 PEP 484。一个更简明的介绍是 PEP 483。
下面的函数接收与返回的都是字符串,注解方式如下:
def greeting(name: str) -> str:
return 'Hello ' + name
greeting
函数中,参数 name
的类型应是 str
,返回类型是 str
。子类型也可以作为参数。
新的功能频繁地被添加到 typing
模块中。typing_extensions 包提供了这些新功能对旧版本 Python 的向后移植。
要获取已弃用特性及其弃用时间线的概要,请参阅 Deprecation Timeline of Major Features。
参见
- "类型系统备忘单"
关于类型提示的概览(发布于 mypy 文档站点)
- mypy 文档 的 "Type System Reference" 章节
Python 类型系统是通过 PEP 来标准化的,因此该参考应当广泛适用于大多数 Python 类型检查器。 (但某些部分仍然是 mypy 专属的。)
- "Static Typing with Python"
由社区编写的不限定具体类型检查器的文档,详细讲解了类型系统特性,有用的类型相关工具以及类型的最佳实践。
相关的 PEP¶
自从在 PEP 484 和 PEP 483 中首次引入类型提示之来,已有多个 PEP 对 Python 的类型标注框架进行了修改和加强:
The full list of PEPs
- PEP 544: Protocol:结构子类型(静态鸭子类型)。
引入
Protocol
和@runtime_checkable
装饰器。
- PEP 585: 标准集合中的类型提示泛型
引入
types.GenericAlias
和使用标准库类作为 通用类型 的能力。
- PEP 604: 允许
X | Y
形式的联合类型写法 引入
types.UnionType
和使用二元或运算符|
来表示 类型联合 的能力。
- PEP 604: 允许
- PEP 612: 形参规格变量
引入
ParamSpec
和Concatenate
- PEP 646:可变参数泛型
引入
TypeVarTuple
- PEP 655:将单个 TypedDict 项标记为必填或非必填项
引入
Required
和NotRequired
- PEP 675:任意字面值字符串类型
- PEP 681:数据类变换
引入
@dataclass_transform
装饰器
类型别名¶
类型别名是通过为类型赋值为指定的别名来定义的。 在本例中,Vector
和 list[float]
将被视为可互换的同义词:
Vector = list[float]
def scale(scalar: float, vector: Vector) -> Vector:
return [scalar * num for num in vector]
# passes type checking; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])
类型别名适用于简化复杂的类型签名。例如:
from collections.abc import Sequence
ConnectionOptions = dict[str, str]
Address = tuple[str, int]
Server = tuple[Address, ConnectionOptions]
def broadcast_message(message: str, servers: Sequence[Server]) -> None:
...
# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
message: str,
servers: Sequence[tuple[tuple[str, int], dict[str, str]]]) -> None:
...
类型别名可以用 TypeAlias
来标记,以显式指明该语句是类型别名声明,而不是普通的变量赋值:
from typing import TypeAlias
Vector: TypeAlias = list[float]
NewType¶
使用 NewType
助手来创建不同的类型
from typing import NewType
UserId = NewType('UserId', int)
some_id = UserId(524313)
静态类型检查器把新类型当作原始类型的子类,这种方式适用于捕捉逻辑错误:
def get_user_name(user_id: UserId) -> str:
...
# passes type checking
user_a = get_user_name(UserId(42351))
# fails type checking; an int is not a UserId
user_b = get_user_name(-1)
UserId
类型的变量可执行所有 int
操作,但返回结果都是 int
类型。这种方式允许在预期 int
时传入 UserId
,还能防止意外创建无效的 UserId
:
# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)
注意,这些检查只由静态类型检查器强制执行。在运行时,语句 Derived = NewType('Derived', Base)
将产生一个 Derived
可调用对象,该对象立即返回你传递给它的任何参数。 这意味着语句 Derived(some_value)
不会创建一个新的类,也不会引入超出常规函数调用的很多开销。
更确切地说,在运行时,some_value is Derived(some_value)
表达式总为 True。
创建 Derived
的子类型是无效的:
from typing import NewType
UserId = NewType('UserId', int)
# Fails at runtime and does not pass type checking
class AdminUserId(UserId): pass
然而,我们可以在 "派生的" NewType
的基础上创建一个 NewType
。
from typing import NewType
UserId = NewType('UserId', int)
ProUserId = NewType('ProUserId', UserId)
同时,ProUserId
的类型检查也可以按预期执行。
详见 PEP 484。
备注
请记住使用类型别名将声明两个类型是相互 等价 的。 使用 Alias = Original
将使静态类型检查器在任何情况下都把 Alias
视为与 Original
完全等价。 这在你想要简化复杂的类型签名时会很有用处。
反之,NewType
声明把一种类型当作另一种类型的 子类型。Derived = NewType('Derived', Original)
时,静态类型检查器把 Derived
当作 Original
的 子类 ,即,Original
类型的值不能用在预期 Derived
类型的位置。这种方式适用于以最小运行时成本防止逻辑错误。
3.5.2 新版功能.
在 3.10 版更改: NewType
现在是一个类而不是一个函数。 因此,当调用 NewType
而非常规函数时会有一些额外的运行时开销。
在 3.11 版更改: 调用 NewType
的性能已恢复到 Python 3.9 时的水平。
标注可调用对象¶
函数 -- 或其他 callable 对象 -- 可以使用 collections.abc.Callable
或 typing.Callable
来标注。 Callable[[int], str]
表示一个接受 int
类型的单个参数并返回 str
的函数。
例如:
from collections.abc import Callable, Awaitable
def feeder(get_next_item: Callable[[], str]) -> None:
... # Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
... # Body
async def on_update(value: str) -> None:
... # Body
callback: Callable[[str], Awaitable[None]] = on_update
下标语法总是要刚好使用两个值:参数列表和返回类型。 参数列表必须是一个由类型组成的列表、ParamSpec
、Concatenate
或省略号。 返回类型必须是单一类型。
如果将一个省略号字面值 ...
作为参数列表,则表示可以接受包含任意形参列表的可调用对象:
def concat(x: str, y: str) -> str:
return x + y
x: Callable[..., str]
x = str # OK
x = concat # Also OK
Callable
无法表达复杂的签名如接受可变数量参数的函数、重载的函数
或具有仅限关键字形参的函数。 但是,这些签名可通过定义具有 __call__()
方法的 Protocol
类来表达:
from collections.abc import Iterable
from typing import Protocol
class Combiner(Protocol):
def __call__(self, *vals: bytes, maxlen: int | None = None) -> list[bytes]: ...
def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
for item in data:
...
def good_cb(*vals: bytes, maxlen: int | None = None) -> list[bytes]:
...
def bad_cb(*vals: bytes, maxitems: int | None) -> list[bytes]:
...
batch_proc([], good_cb) # OK
batch_proc([], bad_cb) # Error! Argument 2 has incompatible type because of
# different name and kind in the callback
以其他可调用对象为参数的可调用对象可以使用 ParamSpec
来表明其参数类型是相互依赖的。 此外,如果该可调用对象增加或删除了其他可调用对象的参数,可以使用 Concatenate
操作符。 它们分别采取 Callable[ParamSpecVariable, ReturnType]
和 Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType]
的形式。
在 3.10 版更改: Callable
现在支持 ParamSpec
和 Concatenate
。 详情见 PEP 612。
参见
ParamSpec
和 Concatenate
的文档提供了在 Callable
中使用的例子。
泛型(Generic)¶
由于无法以通用方式静态地推断容器中保存的对象的类型信息,标准库中的许多容器类都支持下标操作来以表示容器元素的预期类型。
from collections.abc import Mapping, Sequence
class Employee: ...
# Sequence[Employee] indicates that all elements in the sequence
# must be instances of "Employee".
# Mapping[str, str] indicates that all keys and all values in the mapping
# must be strings.
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
Generics can be parameterized by using a factory available in typing
called TypeVar
.
from collections.abc import Sequence
from typing import TypeVar
T = TypeVar('T') # Declare type variable "T"
def first(l: Sequence[T]) -> T: # Function is generic over the TypeVar "T"
return l[0]
Annotating tuples¶
对于 Python 中的大多数容器,类型系统假定容器中的所有元素都是相同类型的。例如:
from collections.abc import Mapping
# Type checker will infer that all elements in ``x`` are meant to be ints
x: list[int] = []
# Type checker error: ``list`` only accepts a single type argument:
y: list[int, str] = [1, 'foo']
# Type checker will infer that all keys in ``z`` are meant to be strings,
# and that all values in ``z`` are meant to be either strings or ints
z: Mapping[str, str | int] = {}
list
只接受一个类型参数,因此类型检查程序会对上述对 y
的赋值报错。同样, Mapping
只接受两个类型参数:第一个参数表示键的类型,第二个参数表示值的类型。
然而,与大多数其它 Python 容器不同的是,在 Python 惯用代码中,元组中的元素并不都是相同类型的,这种情况很常见。因此,在 Python 的类型系统中,元组被特殊化了。tuple
接受*任意数量*的类型参数:
# OK: ``x`` is assigned to a tuple of length 1 where the sole element is an int
x: tuple[int] = (5,)
# OK: ``y`` is assigned to a tuple of length 2;
# element 1 is an int, element 2 is a str
y: tuple[int, str] = (5, "foo")
# Error: the type annotation indicates a tuple of length 1,
# but ``z`` has been assigned to a tuple of length 3
z: tuple[int] = (1, 2, 3)
要表示一个 任意 长度的元组,并使其中所有元素的类型都为``T`` ,请使用``tuple[T, ...]`` 。要表示空元组,请使用``tuple[()]`` 。使用``tuple`` 作为注释等同于使用``tuple[Any, ...]``:
x: tuple[int, ...] = (1, 2)
# These reassignments are OK: ``tuple[int, ...]`` indicates x can be of any length
x = (1, 2, 3)
x = ()
# This reassignment is an error: all elements in ``x`` must be ints
x = ("foo", "bar")
# ``y`` can only ever be assigned to an empty tuple
y: tuple[()] = ()
z: tuple = ("foo", "bar")
# These reassignments are OK: plain ``tuple`` is equivalent to ``tuple[Any, ...]``
z = (1, 2, 3)
z = ()
类对象 的类型¶
A variable annotated with C
may accept a value of type C
. In
contrast, a variable annotated with type[C]
(or
typing.Type[C]
) may accept values that are classes
themselves -- specifically, it will accept the class object of C
. For
example:
a = 3 # Has type ``int``
b = int # Has type ``type[int]``
c = type(a) # Also has type ``type[int]``
Note that type[C]
is covariant:
class User: ...
class ProUser(User): ...
class TeamUser(User): ...
def make_new_user(user_class: type[User]) -> User:
# ...
return user_class()
make_new_user(User) # OK
make_new_user(ProUser) # Also OK: ``type[ProUser]`` is a subtype of ``type[User]``
make_new_user(TeamUser) # Still fine
make_new_user(User()) # Error: expected ``type[User]`` but got ``User``
make_new_user(int) # Error: ``type[int]`` is not a subtype of ``type[User]``
The only legal parameters for type
are classes, Any
,
type variables, and unions of any of these types.
For example:
def new_non_team_user(user_class: type[BasicUser | ProUser]): ...
new_non_team_user(BasicUser) # OK
new_non_team_user(ProUser) # OK
new_non_team_user(TeamUser) # Error: ``type[TeamUser]`` is not a subtype
# of ``type[BasicUser | ProUser]``
new_non_team_user(User) # Also an error
type[Any]
is equivalent to type
, which is the root of Python's
metaclass hierarchy.
用户定义的泛型类型¶
用户定义的类可以定义为泛型类。
from typing import TypeVar, Generic
from logging import Logger
T = TypeVar('T')
class LoggedVar(Generic[T]):
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)
Generic[T]
as a base class defines that the class LoggedVar
takes a
single type parameter T
. This also makes T
valid as a type within the
class body.
The Generic
base class defines __class_getitem__()
so
that LoggedVar[T]
is valid as a type:
from collections.abc import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
一个泛型可以有任何数量的类型变量。所有种类的 TypeVar
都可以作为泛型的参数:
from typing import TypeVar, Generic, Sequence
T = TypeVar('T', contravariant=True)
B = TypeVar('B', bound=Sequence[bytes], covariant=True)
S = TypeVar('S', int, str)
class WeirdTrio(Generic[T, B, S]):
...
Generic
类型变量的参数应各不相同。下列代码就是无效的:
from typing import TypeVar, Generic
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
您可以通过 Generic
来使用多重继承:
from collections.abc import Sized
from typing import TypeVar, Generic
T = TypeVar('T')
class LinkedList(Sized, Generic[T]):
...
When inheriting from generic classes, some type parameters could be fixed:
from collections.abc import Mapping
from typing import TypeVar
T = TypeVar('T')
class MyDict(Mapping[str, T]):
...
比如,本例中 MyDict
调用的单参数,T
。
Using a generic class without specifying type parameters assumes
Any
for each position. In the following example, MyIterable
is
not generic but implicitly inherits from Iterable[Any]
:
from collections.abc import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
...
用户定义的通用类型别名也同样被支持。示例:
from collections.abc import Iterable
from typing import TypeVar
S = TypeVar('S')
Response = Iterable[S] | int
# Return type here is same as Iterable[str] | int
def response(query: str) -> Response[str]:
...
T = TypeVar('T', int, float, complex)
Vec = Iterable[tuple[T, T]]
def inproduct(v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
return sum(x*y for x, y in v)
在 3.7 版更改: Generic
不再支持自定义元类。
User-defined generics for parameter expressions are also supported via parameter
specification variables in the form Generic[P]
. The behavior is consistent
with type variables' described above as parameter specification variables are
treated by the typing module as a specialized type variable. The one exception
to this is that a list of types can be used to substitute a ParamSpec
:
>>> from typing import Generic, ParamSpec, TypeVar
>>> T = TypeVar('T')
>>> P = ParamSpec('P')
>>> class Z(Generic[T, P]): ...
...
>>> Z[int, [dict, float]]
__main__.Z[int, (<class 'dict'>, <class 'float'>)]
Furthermore, a generic with only one parameter specification variable will accept
parameter lists in the forms X[[Type1, Type2, ...]]
and also
X[Type1, Type2, ...]
for aesthetic reasons. Internally, the latter is converted
to the former, so the following are equivalent:
>>> class X(Generic[P]): ...
...
>>> X[int, str]
__main__.X[(<class 'int'>, <class 'str'>)]
>>> X[[int, str]]
__main__.X[(<class 'int'>, <class 'str'>)]
Note that generics with ParamSpec
may not have correct
__parameters__
after substitution in some cases because they
are intended primarily for static type checking.
用户定义的泛型类可以将 ABC 作为基类而不会导致元类冲突。 参数化泛型的输出结果会被缓存,且 typing 模块中的大多数类型都是 hashable 并且支持相等性比较。
Any
类型¶
Any
是一种特殊的类型。静态类型检查器认为所有类型均与 Any
兼容,同样,Any
也与所有类型兼容。
也就是说,可对 Any
类型的值执行任何操作或方法调用,并赋值给任意变量:
from typing import Any
a: Any = None
a = [] # OK
a = 2 # OK
s: str = ''
s = a # OK
def foo(item: Any) -> int:
# Passes type checking; 'item' could be any type,
# and that type might have a 'bar' method
item.bar()
...
注意,Any
类型的值赋给更精确的类型时,不执行类型检查。例如,把 a
赋给 s
,在运行时,即便 s
已声明为 str
类型,但接收 int
值时,静态类型检查器也不会报错。
此外,未指定返回值与参数类型的函数,都隐式地默认使用 Any
:
def legacy_parser(text):
...
return data
# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
...
return data
需要混用动态与静态类型代码时,此操作把 Any
当作 应急出口。
Any
和 object
的区别。与 Any
相似,所有类型都是 object
的子类型。然而,与 Any
不同,object 不可逆:object
不是 其它类型的子类型。
就是说,值的类型是 object
时,类型检查器几乎会拒绝所有对它的操作,并且,把它赋给更精确的类型变量(或返回值)属于类型错误。例如:
def hash_a(item: object) -> int:
# Fails type checking; an object does not have a 'magic' method.
item.magic()
...
def hash_b(item: Any) -> int:
# Passes type checking
item.magic()
...
# Passes type checking, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")
# Passes type checking, since Any is compatible with all types
hash_b(42)
hash_b("foo")
名义子类型 vs 结构子类型¶
最初 PEP 484 将 Python 静态类型系统定义为使用 名义子类型。这意味着当且仅当类 A
是 B
的子类时,才满足有类 B
预期时使用类 A
。
此项要求以前也适用于抽象基类,例如,Iterable
。这种方式的问题在于,定义类时必须显式说明,既不 Pythonic,也不是动态类型式 Python 代码的惯用写法。例如,下列代码就遵从了 PEP 484 的规范:
from collections.abc import Sized, Iterable, Iterator
class Bucket(Sized, Iterable[int]):
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
PEP 544 允许用户在类定义时不显式说明基类,从而解决了这一问题,静态类型检查器隐式认为 Bucket
既是 Sized
的子类型,又是 Iterable[int]
的子类型。这就是 结构子类型 (又称为静态鸭子类型):
from collections.abc import Iterator, Iterable
class Bucket: # Note: no base classes
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
def collect(items: Iterable[int]) -> int: ...
result = collect(Bucket()) # Passes type check
此外,结构子类型的优势在于,通过继承特殊类 Protocol
,用户可以定义新的自定义协议(见下文中的例子)。
模块内容¶
typing
模块定义了以下类、函数和装饰器。
特殊类型原语¶
特殊类型¶
These can be used as types in annotations. They do not support subscription
using []
.
- typing.AnyStr¶
-
定义:
AnyStr = TypeVar('AnyStr', str, bytes)
AnyStr
is meant to be used for functions that may acceptstr
orbytes
arguments but cannot allow the two to mix.例如:
def concat(a: AnyStr, b: AnyStr) -> AnyStr: return a + b concat("foo", "bar") # OK, output has type 'str' concat(b"foo", b"bar") # OK, output has type 'bytes' concat("foo", b"bar") # Error, cannot mix str and bytes
Note that, despite its name,
AnyStr
has nothing to do with theAny
type, nor does it mean "any string". In particular,AnyStr
andstr | bytes
are different from each other and have different use cases:# Invalid use of AnyStr: # The type variable is used only once in the function signature, # so cannot be "solved" by the type checker def greet_bad(cond: bool) -> AnyStr: return "hi there!" if cond else b"greetings!" # The better way of annotating this function: def greet_proper(cond: bool) -> str | bytes: return "hi there!" if cond else b"greetings!"
- typing.LiteralString¶
Special type that includes only literal strings.
Any string literal is compatible with
LiteralString
, as is anotherLiteralString
. However, an object typed as juststr
is not. A string created by composingLiteralString
-typed objects is also acceptable as aLiteralString
.示例:
def run_query(sql: LiteralString) -> None: ... def caller(arbitrary_string: str, literal_string: LiteralString) -> None: run_query("SELECT * FROM students") # OK run_query(literal_string) # OK run_query("SELECT * FROM " + literal_string) # OK run_query(arbitrary_string) # type checker error run_query( # type checker error f"SELECT * FROM students WHERE name = {arbitrary_string}" )
LiteralString
is useful for sensitive APIs where arbitrary user-generated strings could generate problems. For example, the two cases above that generate type checker errors could be vulnerable to an SQL injection attack.请参阅 PEP 675 了解详情。
3.11 新版功能.
- typing.Never¶
底类型,一个没有成员的类型。
这可以用于定义一个永不应该被调用的函数,或一个永不返回的函数:
from typing import Never def never_call_me(arg: Never) -> None: pass def int_or_str(arg: int | str) -> None: never_call_me(arg) # type checker error match arg: case int(): print("It's an int") case str(): print("It's a str") case _: never_call_me(arg) # OK, arg is of type Never
3.11 新版功能: 在更老的 Python 版本上,
NoReturn
可被用于表达相同的概念。Never
为了更显式地表达这个意图被加入。
- typing.NoReturn¶
Special type indicating that a function never returns.
例如:
from typing import NoReturn def stop() -> NoReturn: raise RuntimeError('no way')
NoReturn
也可以用于 底类型 的定义,这是一种没有值的类型。自从 Python 3.11 开始,应该使用Never
类型代替这个概念。类型检查器应该将这两种类型视为等价。3.5.4 新版功能.
3.6.2 新版功能.
- typing.Self¶
Special type to represent the current enclosed class.
例如:
from typing import Self, reveal_type class Foo: def return_self(self) -> Self: ... return self class SubclassOfFoo(Foo): pass reveal_type(Foo().return_self()) # Revealed type is "Foo" reveal_type(SubclassOfFoo().return_self()) # Revealed type is "SubclassOfFoo"
此标准在语法上等价于以下代码,但形式更为简洁:
from typing import TypeVar Self = TypeVar("Self", bound="Foo") class Foo: def return_self(self: Self) -> Self: ... return self
In general, if something returns
self
, as in the above examples, you should useSelf
as the return annotation. IfFoo.return_self
was annotated as returning"Foo"
, then the type checker would infer the object returned fromSubclassOfFoo.return_self
as being of typeFoo
rather thanSubclassOfFoo
.其它常见用例包括:
被用作替代构造器的
classmethod
,它将返回cls
形参的实例。标注一个返回自身的
__enter__()
方法。
You should not use
Self
as the return annotation if the method is not guaranteed to return an instance of a subclass when the class is subclassed:class Eggs: # Self would be an incorrect return annotation here, # as the object returned is always an instance of Eggs, # even in subclasses def returns_eggs(self) -> "Eggs": return Eggs()
更多细节请参见 PEP 673。
3.11 新版功能.
- typing.TypeAlias¶
Special annotation for explicitly declaring a type alias.
例如:
from typing import TypeAlias Factors: TypeAlias = list[int]
TypeAlias
is particularly useful for annotating aliases that make use of forward references, as it can be hard for type checkers to distinguish these from normal variable assignments:from typing import Generic, TypeAlias, TypeVar T = TypeVar("T") # "Box" does not exist yet, # so we have to use quotes for the forward reference. # Using ``TypeAlias`` tells the type checker that this is a type alias declaration, # not a variable assignment to a string. BoxOfStrings: TypeAlias = "Box[str]" class Box(Generic[T]): @classmethod def make_box_of_strings(cls) -> BoxOfStrings: ...
请参阅 PEP 613 了解详情。
3.10 新版功能.
特殊形式¶
These can be used as types in annotations. They all support subscription using
[]
, but each has a unique syntax.
- typing.Union¶
联合类型;
Union[X, Y]
等价于X | Y
,意味着满足 X 或 Y 之一。要定义一个联合类型,可以使用类似
Union[int, str]
或简写int | str
。建议使用这种简写。细节:参数必须是某种类型,且至少有一个。
联合类型之联合类型会被展平,例如:
Union[Union[int, str], float] == Union[int, str, float]
单参数之联合类型就是该参数自身,例如:
Union[int] == int # The constructor actually returns int
冗余的参数会被跳过,例如:
Union[int, str, int] == Union[int, str] == int | str
比较联合类型,不涉及参数顺序,例如:
Union[int, str] == Union[str, int]
不可创建
Union
的子类或实例。没有
Union[X][Y]
这种写法。
在 3.7 版更改: 在运行时,不要移除联合类型中的显式子类。
在 3.10 版更改: 联合类型现在可以写成
X | Y
。 参见 联合类型表达式。
- typing.Optional¶
Optional[X]
等价于X | None
(或Union[X, None]
) 。注意,可选类型与含默认值的可选参数不同。含默认值的可选参数不需要在类型注解上添加
Optional
限定符,因为它仅是可选的。例如:def foo(arg: int = 0) -> None: ...
另一方面,显式应用
None
值时,不管该参数是否可选,Optional
都适用。例如:def foo(arg: Optional[int] = None) -> None: ...
在 3.10 版更改: 可选参数现在可以写成
X | None
。 参见 联合类型表达式。
- typing.Concatenate¶
Special form for annotating higher-order functions.
Concatenate
can be used in conjunction with Callable andParamSpec
to annotate a higher-order callable which adds, removes, or transforms parameters of another callable. Usage is in the formConcatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable]
.Concatenate
is currently only valid when used as the first argument to a Callable. The last parameter toConcatenate
must be aParamSpec
or ellipsis (...
).例如,为了注释一个装饰器
with_lock
,它为被装饰的函数提供了threading.Lock
,Concatenate
可以用来表示with_lock
期望一个可调用对象,该对象接收一个Lock
作为第一个参数,并返回一个具有不同类型签名的可调用对象。 在这种情况下,ParamSpec
表示返回的可调用对象的参数类型取决于被传入的可调用程序的参数类型:from collections.abc import Callable from threading import Lock from typing import Concatenate, ParamSpec, TypeVar P = ParamSpec('P') R = TypeVar('R') # Use this lock to ensure that only one thread is executing a function # at any time. my_lock = Lock() def with_lock(f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]: '''A type-safe decorator which provides a lock.''' def inner(*args: P.args, **kwargs: P.kwargs) -> R: # Provide the lock as the first argument. return f(my_lock, *args, **kwargs) return inner @with_lock def sum_threadsafe(lock: Lock, numbers: list[float]) -> float: '''Add a list of numbers together in a thread-safe manner.''' with lock: return sum(numbers) # We don't need to pass in the lock ourselves thanks to the decorator. sum_threadsafe([1.1, 2.2, 3.3])
3.10 新版功能.
- typing.Literal¶
Special typing form to define "literal types".
Literal
can be used to indicate to type checkers that the annotated object has a value equivalent to one of the provided literals.例如:
def validate_simple(data: Any) -> Literal[True]: # always returns True ... Mode: TypeAlias = Literal['r', 'rb', 'w', 'wb'] def open_helper(file: str, mode: Mode) -> str: ... open_helper('/some/path', 'r') # Passes type check open_helper('/other/path', 'typo') # Error in type checker
Literal[...]
不能创建子类。在运行时,任意值均可作为Literal[...]
的类型参数,但类型检查器可以对此加以限制。字面量类型详见 PEP 586 。3.8 新版功能.
- typing.ClassVar¶
标记类变量的特殊类型构造器。
如 PEP 526 所述,打包在 ClassVar 内的变量注解是指,给定属性应当用作类变量,而不应设置在类实例上。用法如下:
class Starship: stats: ClassVar[dict[str, int]] = {} # class variable damage: int = 10 # instance variable
ClassVar
仅接受类型,也不能使用下标。ClassVar
本身不是类,不应用于isinstance()
或issubclass()
。ClassVar
不改变 Python 运行时行为,但可以用于第三方类型检查器。例如,类型检查器会认为以下代码有错:enterprise_d = Starship(3000) enterprise_d.stats = {} # Error, setting class variable on instance Starship.stats = {} # This is OK
3.5.3 新版功能.
- typing.Final¶
Special typing construct to indicate final names to type checkers.
Final names cannot be reassigned in any scope. Final names declared in class scopes cannot be overridden in subclasses.
例如:
MAX_SIZE: Final = 9000 MAX_SIZE += 1 # Error reported by type checker class Connection: TIMEOUT: Final[int] = 10 class FastConnector(Connection): TIMEOUT = 1 # Error reported by type checker
这些属性没有运行时检查。详见 PEP 591。
3.8 新版功能.
- typing.Required¶
Special typing construct to mark a
TypedDict
key as required.This is mainly useful for
total=False
TypedDicts. SeeTypedDict
and PEP 655 for more details.3.11 新版功能.
- typing.NotRequired¶
Special typing construct to mark a
TypedDict
key as potentially missing.3.11 新版功能.
- typing.Annotated¶
Special typing form to add context-specific metadata to an annotation.
Add metadata
x
to a given typeT
by using the annotationAnnotated[T, x]
. Metadata added usingAnnotated
can be used by static analysis tools or at runtime. At runtime, the metadata is stored in a__metadata__
attribute.If a library or tool encounters an annotation
Annotated[T, x]
and has no special logic for the metadata, it should ignore the metadata and simply treat the annotation asT
. As such,Annotated
can be useful for code that wants to use annotations for purposes outside Python's static typing system.Using
Annotated[T, x]
as an annotation still allows for static typechecking ofT
, as type checkers will simply ignore the metadatax
. In this way,Annotated
differs from the@no_type_check
decorator, which can also be used for adding annotations outside the scope of the typing system, but completely disables typechecking for a function or class.The responsibility of how to interpret the metadata lies with the the tool or library encountering an
Annotated
annotation. A tool or library encountering anAnnotated
type can scan through the metadata elements to determine if they are of interest (e.g., usingisinstance()
).- Annotated[<type>, <metadata>]
Here is an example of how you might use
Annotated
to add metadata to type annotations if you were doing range analysis:@dataclass class ValueRange: lo: int hi: int T1 = Annotated[int, ValueRange(-10, 5)] T2 = Annotated[T1, ValueRange(-20, 3)]
Details of the syntax:
Annotated
的第一个参数必须是有效类型。Multiple metadata elements can be supplied (
Annotated
supports variadic arguments):@dataclass class ctype: kind: str Annotated[int, ValueRange(3, 10), ctype("char")]
It is up to the tool consuming the annotations to decide whether the client is allowed to add multiple metadata elements to one annotation and how to merge those annotations.
Annotated
must be subscripted with at least two arguments (Annotated[int]
is not valid)The order of the metadata elements is preserved and matters for equality checks:
assert Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[ int, ctype("char"), ValueRange(3, 10) ]
Nested
Annotated
types are flattened. The order of the metadata elements starts with the innermost annotation:assert Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[ int, ValueRange(3, 10), ctype("char") ]
Duplicated metadata elements are not removed:
assert Annotated[int, ValueRange(3, 10)] != Annotated[ int, ValueRange(3, 10), ValueRange(3, 10) ]
Annotated
can be used with nested and generic aliases:@dataclass class MaxLen: value: int T = TypeVar("T") Vec: TypeAlias = Annotated[list[tuple[T, T]], MaxLen(10)] assert Vec[int] == Annotated[list[tuple[int, int]], MaxLen(10)]
Annotated
cannot be used with an unpackedTypeVarTuple
:Variadic: TypeAlias = Annotated[*Ts, Ann1] # NOT valid
This would be equivalent to:
Annotated[T1, T2, T3, ..., Ann1]
where
T1
,T2
, etc. areTypeVars
. This would be invalid: only one type should be passed to Annotated.By default,
get_type_hints()
strips the metadata from annotations. Passinclude_extras=True
to have the metadata preserved:>>> from typing import Annotated, get_type_hints >>> def func(x: Annotated[int, "metadata"]) -> None: pass ... >>> get_type_hints(func) {'x': <class 'int'>, 'return': <class 'NoneType'>} >>> get_type_hints(func, include_extras=True) {'x': typing.Annotated[int, 'metadata'], 'return': <class 'NoneType'>}
At runtime, the metadata associated with an
Annotated
type can be retrieved via the__metadata__
attribute:>>> from typing import Annotated >>> X = Annotated[int, "very", "important", "metadata"] >>> X typing.Annotated[int, 'very', 'important', 'metadata'] >>> X.__metadata__ ('very', 'important', 'metadata')
参见
- PEP 593 - Flexible function and variable annotations
The PEP introducing
Annotated
to the standard library.
3.9 新版功能.
- typing.TypeGuard¶
Special typing construct for marking user-defined type guard functions.
TypeGuard
can be used to annotate the return type of a user-defined type guard function.TypeGuard
only accepts a single type argument. At runtime, functions marked this way should return a boolean.PX旨在使 类型缩小 受益--这是静态类型检查器用来确定程序代码流中表达式的更精确类型的一种技术。通常,类型缩小是通过分析条件性代码流并将缩小的结果应用于一个代码块来完成的。 这里的条件表达式有时被称为 "类型保护":
def is_str(val: str | float): # "isinstance" type guard if isinstance(val, str): # Type of ``val`` is narrowed to ``str`` ... else: # Else, type of ``val`` is narrowed to ``float``. ...
有时,使用一个用户定义的布尔函数作为类型保护会很方便。 这样的函数应该使用
TypeGuard[...]
作为其返回类型,以提醒静态类型检查器注意这一意图。对于一个给定的函数,使用
-> TypeGuard
告诉静态类型检查器:返回值是一个布尔值。
如果返回值是
True
,其参数的类型是TypeGuard
里面的类型。
例如:
def is_str_list(val: list[object]) -> TypeGuard[list[str]]: '''Determines whether all objects in the list are strings''' return all(isinstance(x, str) for x in val) def func1(val: list[object]): if is_str_list(val): # Type of ``val`` is narrowed to ``list[str]``. print(" ".join(val)) else: # Type of ``val`` remains as ``list[object]``. print("Not a list of strings!")
如果
is_str_list
是一个类或实例方法,那么TypeGuard
中的类型映射到cls
或self
之后的第二个参数的类型。简而言之,
def foo(arg: TypeA) -> TypeGuard[TypeB]: ...
形式的意思是:如果foo(arg)
返回True
,那么arg
将把TypeA
缩小为TypeB
。备注
TypeB
无需为TypeA
的缩小形式 -- 它甚至可以是扩大形式。 主要原因是允许像把list[object]
缩小到list[str]
这样的事情,即使后者不是前者的一个子类型,因为list
是不变的。 编写类型安全的类型防护的责任留给了用户。TypeGuard
也适用于类型变量。 详情参见 PEP 647。3.10 新版功能.
- typing.Unpack¶
Typing operator to conceptually mark an object as having been unpacked.
For example, using the unpack operator
*
on atype variable tuple
is equivalent to usingUnpack
to mark the type variable tuple as having been unpacked:Ts = TypeVarTuple('Ts') tup: tuple[*Ts] # Effectively does: tup: tuple[Unpack[Ts]]
In fact,
Unpack
can be used interchangeably with*
in the context oftyping.TypeVarTuple
andbuiltins.tuple
types. You might seeUnpack
being used explicitly in older versions of Python, where*
couldn't be used in certain places:# In older versions of Python, TypeVarTuple and Unpack # are located in the `typing_extensions` backports package. from typing_extensions import TypeVarTuple, Unpack Ts = TypeVarTuple('Ts') tup: tuple[*Ts] # Syntax error on Python <= 3.10! tup: tuple[Unpack[Ts]] # Semantically equivalent, and backwards-compatible
3.11 新版功能.
Building generic types¶
The following classes should not be used directly as annotations. Their intended purpose is to be building blocks for creating generic types.
- class typing.Generic¶
用于泛型类型的抽象基类。
A generic type is typically declared by inheriting from an instantiation of this class with one or more type variables. For example, a generic mapping type might be defined as:
class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc.
该类的用法如下:
X = TypeVar('X') Y = TypeVar('Y') def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: try: return mapping[key] except KeyError: return default
- class typing.TypeVar(name, *constraints, bound=None, covariant=False, contravariant=False)¶
类型变量。
用法:
T = TypeVar('T') # Can be anything S = TypeVar('S', bound=str) # Can be any subtype of str A = TypeVar('A', str, bytes) # Must be exactly str or bytes
Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function and type alias definitions. See
Generic
for more information on generic types. Generic functions work as follows:def repeat(x: T, n: int) -> Sequence[T]: """Return a list containing n references to x.""" return [x]*n def print_capitalized(x: S) -> S: """Print x capitalized, and return x.""" print(x.capitalize()) return x def concatenate(x: A, y: A) -> A: """Add two strings or bytes objects together.""" return x + y
请注意,类型变量可以是 被绑定的 , 被约束的 ,或者两者都不是,但不能既是被绑定的 又是 被约束的。
Type variables may be marked covariant or contravariant by passing
covariant=True
orcontravariant=True
. See PEP 484 for more details. By default, type variables are invariant.绑定类型变量和约束类型变量在几个重要方面具有不同的主义。 使用 绑定 类型变量意味着
TypeVar
将尽可能使用最为专属的类型来解析:x = print_capitalized('a string') reveal_type(x) # revealed type is str class StringSubclass(str): pass y = print_capitalized(StringSubclass('another string')) reveal_type(y) # revealed type is StringSubclass z = print_capitalized(45) # error: int is not a subtype of str
类型变量可以被绑定到具体类型、抽象类型( ABC 或 protocol ),甚至是类型的联合:
U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method
但是,如果使用 约束 类型变量,则意味着
TypeVar
只能被解析为恰好是给定的约束之一:a = concatenate('one', 'two') reveal_type(a) # revealed type is str b = concatenate(StringSubclass('one'), StringSubclass('two')) reveal_type(b) # revealed type is str, despite StringSubclass being passed in c = concatenate('one', b'two') # error: type variable 'A' can be either str or bytes in a function call, but not both
At runtime,
isinstance(x, T)
will raiseTypeError
.- __name__¶
The name of the type variable.
- __covariant__¶
Whether the type var has been marked as covariant.
- __contravariant__¶
Whether the type var has been marked as contravariant.
- __bound__¶
The bound of the type variable, if any.
- __constraints__¶
A tuple containing the constraints of the type variable, if any.
- class typing.TypeVarTuple(name)¶
类型变量元组。 一种启用了 variadic 泛型的专属
类型变量
形式。用法:
T = TypeVar("T") Ts = TypeVarTuple("Ts") def move_first_element_to_last(tup: tuple[T, *Ts]) -> tuple[*Ts, T]: return (*tup[1:], tup[0])
一个普通类型变量将启用单个类型的形参化。 作为对比,一个类型变量元组通过将 任意 数量的类型变量封包在一个元组中来允许 任意 数量类型的形参化。 例如:
# T is bound to int, Ts is bound to () # Return value is (1,), which has type tuple[int] move_first_element_to_last(tup=(1,)) # T is bound to int, Ts is bound to (str,) # Return value is ('spam', 1), which has type tuple[str, int] move_first_element_to_last(tup=(1, 'spam')) # T is bound to int, Ts is bound to (str, float) # Return value is ('spam', 3.0, 1), which has type tuple[str, float, int] move_first_element_to_last(tup=(1, 'spam', 3.0)) # This fails to type check (and fails at runtime) # because tuple[()] is not compatible with tuple[T, *Ts] # (at least one element is required) move_first_element_to_last(tup=())
请注意解包运算符
*
在tuple[T, *Ts]
中的使用。 在概念上,你可以将Ts
当作一个由类型变量组成的元组(T1, T2, ...)
。 那么tuple[T, *Ts]
就将变为tuple[T, *(T1, T2, ...)]
,这等价于tuple[T, T1, T2, ...]
。 (请注意在旧版本 Python 中,你可能会看到改用Unpack
的写法,如Unpack[Ts]
。)类型变量元组 总是 要被解包。 这有助于区分类型变量元组和普通类型变量:
x: Ts # Not valid x: tuple[Ts] # Not valid x: tuple[*Ts] # The correct way to do it
类型变量元组可被用在与普通类型变量相同的上下文中。 例如,在类定义、参数和返回类型中:
Shape = TypeVarTuple("Shape") class Array(Generic[*Shape]): def __getitem__(self, key: tuple[*Shape]) -> float: ... def __abs__(self) -> "Array[*Shape]": ... def get_shape(self) -> tuple[*Shape]: ...
Type variable tuples can be happily combined with normal type variables:
DType = TypeVar('DType') Shape = TypeVarTuple('Shape') class Array(Generic[DType, *Shape]): # This is fine pass class Array2(Generic[*Shape, DType]): # This would also be fine pass class Height: ... class Width: ... float_array_1d: Array[float, Height] = Array() # Totally fine int_array_2d: Array[int, Height, Width] = Array() # Yup, fine too
但是,请注意在一个类型参数或类型形参列表中最多只能有一个类型变量元组:
x: tuple[*Ts, *Ts] # Not valid class Array(Generic[*Shape, *Shape]): # Not valid pass
最后,一个已解包的类型变量元组可以被用作
*args
的类型标注:def call_soon( callback: Callable[[*Ts], None], *args: *Ts ) -> None: ... callback(*args)
相比非解包的
*args
标注 —— 例如*args: int
,它将指明 所有 参数均为int
——*args: *Ts
启用了对*args
中 单个 参数的类型的引用。 在此,这允许我们确保传入call_soon
的*args
的类型与callback
的(位置)参数的类型相匹配。关于类型变量元组的更多细节,请参见 PEP 646。
- __name__¶
The name of the type variable tuple.
3.11 新版功能.
- class typing.ParamSpec(name, *, bound=None, covariant=False, contravariant=False)¶
参数规范变量。
类型变量
的一个专门版本。用法:
P = ParamSpec('P')
参数规范变量的存在主要是为了使静态类型检查器受益。 它们被用来将一个可调用对象的参数类型转发给另一个可调用对象的参数类型——这种模式通常出现在高阶函数和装饰器中。 它们只有在
Concatenate
中使用时才有效,或者作为Callable
的第一个参数,或者作为用户定义的泛型的参数。 参见Generic
以了解更多关于泛型的信息。例如,为了给一个函数添加基本的日志记录,我们可以创建一个装饰器
add_logging
来记录函数调用。 参数规范变量告诉类型检查器,传入装饰器的可调用对象和由其返回的新可调用对象有相互依赖的类型参数:from collections.abc import Callable from typing import TypeVar, ParamSpec import logging T = TypeVar('T') P = ParamSpec('P') def add_logging(f: Callable[P, T]) -> Callable[P, T]: '''A type-safe decorator to add logging to a function.''' def inner(*args: P.args, **kwargs: P.kwargs) -> T: logging.info(f'{f.__name__} was called') return f(*args, **kwargs) return inner @add_logging def add_two(x: float, y: float) -> float: '''Add two numbers together.''' return x + y
如果没有
ParamSpec
,以前注释这个的最简单的方法是使用一个TypeVar
与绑定Callable[..., Any]
。类型检查器不能对
inner
函数进行类型检查,因为*args
和**kwargs
的类型必须是Any
。cast()
在返回inner
函数时,可能需要在add_logging
装饰器的主体中进行,或者必须告诉静态类型检查器忽略return inner
。
- args¶
- kwargs¶
由于
ParamSpec
同时捕获了位置参数和关键字参数,P.args
和P.kwargs
可以用来将ParamSpec
分割成其组成部分。P.args
代表给定调用中的位置参数的元组,只能用于注释*args
。P.kwargs
代表给定调用中的关键字参数到其值的映射,只能用于注释**kwargs
。在运行时,P.args
和P.kwargs
分别是ParamSpecArgs
和ParamSpecKwargs
的实例。
- __name__¶
The name of the parameter specification.
用
covariant=True
或contravariant=True
创建的参数规范变量可以用来声明协变或逆变泛型类型。 参数bound
也被接受,类似于TypeVar
。 然而这些关键字的实际语义还有待决定。3.10 新版功能.
备注
只有在全局范围内定义的参数规范变量可以被 pickle。
参见
PEP 612 -- Parameter Specification Variables (the PEP which introduced
ParamSpec
andConcatenate
)
- typing.ParamSpecArgs¶
- typing.ParamSpecKwargs¶
ParamSpec`的参数和关键字参数属性。``ParamSpec`
的P.args
属性是ParamSpecArgs
的一个实例,P.kwargs
是ParamSpecKwargs
的一个实例。 它们的目的是用于运行时内部检查的,对静态类型检查器没有特殊意义。Calling
get_origin()
on either of these objects will return the originalParamSpec
:>>> from typing import ParamSpec >>> P = ParamSpec("P") >>> get_origin(P.args) is P True >>> get_origin(P.kwargs) is P True
3.10 新版功能.
其他特殊指令¶
These functions and classes should not be used directly as annotations. Their intended purpose is to be building blocks for creating and declaring types.
- class typing.NamedTuple¶
collections.namedtuple()
的类型版本。用法:
class Employee(NamedTuple): name: str id: int
这相当于:
Employee = collections.namedtuple('Employee', ['name', 'id'])
为字段提供默认值,要在类体内赋值:
class Employee(NamedTuple): name: str id: int = 3 employee = Employee('Guido') assert employee.id == 3
带默认值的字段必须在不带默认值的字段后面。
由此产生的类有一个额外的属性
__annotations__
,给出一个 dict ,将字段名映射到字段类型。(字段名在_fields
属性中,默认值在_field_defaults
属性中,这两者都是namedtuple()
API 的一部分。)NamedTuple
子类也支持文档字符串与方法:class Employee(NamedTuple): """Represents an employee.""" name: str id: int = 3 def __repr__(self) -> str: return f'<Employee {self.name}, id={self.id}>'
NamedTuple
子类也可以为泛型:class Group(NamedTuple, Generic[T]): key: T group: list[T]
反向兼容用法:
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
在 3.6 版更改: 添加了对 PEP 526 中变量注解句法的支持。
在 3.6.1 版更改: 添加了对默认值、方法、文档字符串的支持。
在 3.8 版更改:
_field_types
和__annotations__
属性现已使用常规字典,不再使用OrderedDict
实例。在 3.9 版更改: 移除了
_field_types
属性, 改用具有相同信息,但更标准的__annotations__
属性。在 3.11 版更改: 添加对泛型命名元组的支持。
- class typing.NewType(name, tp)¶
Helper class to create low-overhead distinct types.
A
NewType
is considered a distinct type by a typechecker. At runtime, however, calling aNewType
returns its argument unchanged.用法:
UserId = NewType('UserId', int) # Declare the NewType "UserId" first_user = UserId(1) # "UserId" returns the argument unchanged at runtime
- __module__¶
The module in which the new type is defined.
- __name__¶
The name of the new type.
- __supertype__¶
The type that the new type is based on.
3.5.2 新版功能.
在 3.10 版更改:
NewType
现在是一个类而不是函数。
- class typing.Protocol(Generic)¶
Base class for protocol classes.
Protocol classes are defined like this:
class Proto(Protocol): def meth(self) -> int: ...
这些类主要与静态类型检查器搭配使用,用来识别结构子类型(静态鸭子类型),例如:
class C: def meth(self) -> int: return 0 def func(x: Proto) -> int: return x.meth() func(C()) # Passes static type check
请参阅 PEP 544 了解详情。 使用
runtime_checkable()
装饰的协议类(稍后将介绍)可作为只检查给定属性是否存在,而忽略其类型签名的简单的运行时协议。Protocol 类可以是泛型,例如:
T = TypeVar("T") class GenProto(Protocol[T]): def meth(self) -> T: ...
3.8 新版功能.
- @typing.runtime_checkable¶
用于把 Protocol 类标记为运行时协议。
该协议可以与
isinstance()
和issubclass()
一起使用。应用于非协议的类时,会触发TypeError
。该指令支持简易结构检查,与collections.abc
的Iterable
非常类似,只擅长做一件事。 例如:@runtime_checkable class Closable(Protocol): def close(self): ... assert isinstance(open('/some/file'), Closable) @runtime_checkable class Named(Protocol): name: str import threading assert isinstance(threading.Thread(name='Bob'), Named)
备注
runtime_checkable()
will check only the presence of the required methods or attributes, not their type signatures or types. For example,ssl.SSLObject
is a class, therefore it passes anissubclass()
check against Callable. However, thessl.SSLObject.__init__
method exists only to raise aTypeError
with a more informative message, therefore making it impossible to call (instantiate)ssl.SSLObject
.备注
针对运行时可检查协议的
isinstance()
检查相比针对非协议类的isinstance()
检查可能会惊人的缓慢。 请考虑在性能敏感的代码中使用替代性写法如hasattr()
调用进行结构检查。3.8 新版功能.
- class typing.TypedDict(dict)¶
把类型提示添加至字典的特殊构造器。在运行时,它是纯
dict
。TypedDict
声明一个字典类型,该类型预期所有实例都具有一组键集,其中,每个键都与对应类型的值关联。运行时不检查此预期,而是由类型检查器强制执行。用法如下:class Point2D(TypedDict): x: int y: int label: str a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
为了在不支持 PEP 526 的旧版 Python 中使用此特性,
TypedDict
支持两种额外的等价语法形式:使用字面量
dict
作为第二个参数:Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
使用关键字参数:
Point2D = TypedDict('Point2D', x=int, y=int, label=str)
从 3.11 版起不建议使用,将在 3.13 版中移除: 使用关键字的语法在 3.11 中被弃用,并且会于 3.13 被移除。同时,该语法可能不被静态类型检查器支持。
当任何一个键不是有效的 标识符 时,例如因为它们是关键字或包含连字符,也应该使用函数式语法。例子:
# raises SyntaxError class Point2D(TypedDict): in: int # 'in' is a keyword x-y: int # name with hyphens # OK, functional syntax Point2D = TypedDict('Point2D', {'in': int, 'x-y': int})
默认情况下,所有的键都必须出现在一个
TypedDict
中。 可以使用NotRequired
将单独的键标记为非必要的:class Point2D(TypedDict): x: int y: int label: NotRequired[str] # Alternative syntax Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': NotRequired[str]})
这意味着一个
Point2D
TypedDict
可以省略label
键。也可以通过全部指定
False
将所有键都标记为默认非必要的:class Point2D(TypedDict, total=False): x: int y: int # Alternative syntax Point2D = TypedDict('Point2D', {'x': int, 'y': int}, total=False)
这意味着一个
Point2D
TypedDict
可以省略任何一个键。 类型检查器只需要支持一个字面的False
或True
作为total
参数的值。True
是默认的,它使类主体中定义的所有项目都是必需的。一个
total=False
TypedDict
中单独的键可以使用Required
标记为必要的:class Point2D(TypedDict, total=False): x: Required[int] y: Required[int] label: str # Alternative syntax Point2D = TypedDict('Point2D', { 'x': Required[int], 'y': Required[int], 'label': str }, total=False)
一个
TypedDict
类型有可能使用基于类的语法从一个或多个其他TypedDict
类型继承。用法:class Point3D(Point2D): z: int
Point3D
有三个项目 :x
,y
和z
。 其等价于定义:class Point3D(TypedDict): x: int y: int z: int
TypedDict
不能从非TypedDict
类继承,除了Generic
。 例如:class X(TypedDict): x: int class Y(TypedDict): y: int class Z(object): pass # A non-TypedDict class class XY(X, Y): pass # OK class XZ(X, Z): pass # raises TypeError
A
TypedDict
can be generic:T = TypeVar("T") class Group(TypedDict, Generic[T]): key: T group: list[T]
TypedDict
可以通过注解字典(参见 对象注解属性的最佳实践 了解更多关于注解的最佳实践)、__total__
、__required_keys__
和__optional_keys__
进行内省。- __total__¶
Point2D.__total__
gives the value of thetotal
argument. Example:>>> from typing import TypedDict >>> class Point2D(TypedDict): pass >>> Point2D.__total__ True >>> class Point2D(TypedDict, total=False): pass >>> Point2D.__total__ False >>> class Point3D(Point2D): pass >>> Point3D.__total__ True
- __required_keys__¶
3.9 新版功能.
- __optional_keys__¶
Point2D.__required_keys__
和Point2D.__optional_keys__
返回分别包含必要的和非必要的键的frozenset
对象。标记为
Required
的键总是会出现在__required_keys__
中而标记为NotRequired
的键总是会出现在__optional_keys__
中。For backwards compatibility with Python 3.10 and below, it is also possible to use inheritance to declare both required and non-required keys in the same
TypedDict
. This is done by declaring aTypedDict
with one value for thetotal
argument and then inheriting from it in anotherTypedDict
with a different value fortotal
:>>> class Point2D(TypedDict, total=False): ... x: int ... y: int ... >>> class Point3D(Point2D): ... z: int ... >>> Point3D.__required_keys__ == frozenset({'z'}) True >>> Point3D.__optional_keys__ == frozenset({'x', 'y'}) True
3.9 新版功能.
更多示例与
TypedDict
的详细规则,详见 PEP 589。3.8 新版功能.
在 3.11 版更改: 增加了对将单独的键标记为
Required
或NotRequired
的支持。 参见 PEP 655。在 3.11 版更改: 添加对泛型
TypedDict
的支持。
协议¶
The following protocols are provided by the typing module. All are decorated
with @runtime_checkable
.
- class typing.SupportsAbs¶
含抽象方法
__abs__
的抽象基类,是其返回类型里的协变量。
- class typing.SupportsBytes¶
含抽象方法
__bytes__
的抽象基类。
- class typing.SupportsComplex¶
含抽象方法
__complex__
的抽象基类。
- class typing.SupportsFloat¶
含抽象方法
__float__
的抽象基类。
- class typing.SupportsIndex¶
含抽象方法
__index__
的抽象基类。3.8 新版功能.
- class typing.SupportsInt¶
含抽象方法
__int__
的抽象基类。
- class typing.SupportsRound¶
含抽象方法
__round__
的抽象基类,是其返回类型的协变量。
ABCs for working with IO¶
函数与装饰器¶
- typing.cast(typ, val)¶
把值强制转换为类型。
不变更返回值。对类型检查器而言,代表了返回值具有指定的类型,但运行时故意不做任何检查(以便让检查速度尽量快)。
- typing.assert_type(val, typ, /)¶
让静态类型检查器确认 val 具有推断为 typ 的类型。
在运行时这将不做任何事:它会原样返回第一个参数而没有任何检查或附带影响,无论参数的实际类型是什么。
当静态类型检查器遇到对
assert_type()
的调用时,如果该值不是指定的类型则会报错:def greet(name: str) -> None: assert_type(name, str) # OK, inferred type of `name` is `str` assert_type(name, int) # type checker error
此函数适用于确保类型检查器对脚本的理解符合开发者的意图:
def complex_function(arg: object): # Do some complex type-narrowing logic, # after which we hope the inferred type will be `int` ... # Test whether the type checker correctly understands our function assert_type(arg, int)
3.11 新版功能.
- typing.assert_never(arg, /)¶
让静态类型检查器确认一行代码是不可达的。
示例:
def int_or_str(arg: int | str) -> None: match arg: case int(): print("It's an int") case str(): print("It's a str") case _ as unreachable: assert_never(unreachable)
Here, the annotations allow the type checker to infer that the last case can never execute, because
arg
is either anint
or astr
, and both options are covered by earlier cases.If a type checker finds that a call to
assert_never()
is reachable, it will emit an error. For example, if the type annotation forarg
was insteadint | str | float
, the type checker would emit an error pointing out thatunreachable
is of typefloat
. For a call toassert_never
to pass type checking, the inferred type of the argument passed in must be the bottom type,Never
, and nothing else.在运行时,如果调用此函数将抛出一个异常。
参见
Unreachable Code and Exhaustiveness Checking 有更多关于使用静态类型进行穷尽性检查的信息。
3.11 新版功能.
- typing.reveal_type(obj, /)¶
揭示一个表达式的推断静态类型。
当静态类型检查器遇到一个对此函数的调用时,它将发出包含参数类型的诊断信息。 例如:
x: int = 1 reveal_type(x) # Revealed type is "builtins.int"
这在你想要调试你的类型检查器如何处理一段特定代码时很有用处。
该函数将不加修改地返回其参数,这将允许在表达式中使用它:
x = reveal_type(1) # Revealed type is "builtins.int"
大多数类型检查器都能在任何地方支持
reveal_type()
,即使并未从typing
导入该名称。 从typing
导入该名称能让你的代码运行时不会出现运行时错误并且更清晰地传递意图。在运行时,该函数会将其参数的运行时类型打印到 stderr 并不加修改地返回它:
x = reveal_type(1) # prints "Runtime type is int" print(x) # prints "1"
3.11 新版功能.
- @typing.dataclass_transform(*, eq_default=True, order_default=False, kw_only_default=False, field_specifiers=(), **kwargs)¶
Decorator to mark an object as providing
dataclass
-like behavior.dataclass_transform
may be used to decorate a class, metaclass, or a function that is itself a decorator. The presence of@dataclass_transform()
tells a static type checker that the decorated object performs runtime "magic" that transforms a class in a similar way to@dataclasses.dataclass
.Example usage with a decorator function:
T = TypeVar("T") @dataclass_transform() def create_model(cls: type[T]) -> type[T]: ... return cls @create_model class CustomerModel: id: int name: str
在基类上:
@dataclass_transform() class ModelBase: ... class CustomerModel(ModelBase): id: int name: str
在元类上:
@dataclass_transform() class ModelMeta(type): ... class ModelBase(metaclass=ModelMeta): ... class CustomerModel(ModelBase): id: int name: str
上面定义的
CustomerModel
类将被类型检查器视为类似于使用@dataclasses.dataclass
创建的类。 例如,类型检查器将假定这些类具有接受id
和name
的__init__
方法。被装饰的类、元类或函数可以接受以下布尔值参数,类型检查器将假定它们具有与
@dataclasses.dataclass
装饰器相同的效果:init
,eq
,order
,unsafe_hash
,frozen
,match_args
,kw_only
和slots
。 这些参数的值 (True
或False
) 必须可以被静态地求值。传给
dataclass_transform
装饰器的参数可以被用来定制被装饰的类、元类或函数的默认行为:- 参数
eq_default (bool) -- Indicates whether the
eq
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toTrue
.order_default (bool) -- Indicates whether the
order
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toFalse
.kw_only_default (bool) -- Indicates whether the
kw_only
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toFalse
.field_specifiers (tuple[Callable[..., Any], ...]) -- Specifies a static list of supported classes or functions that describe fields, similar to
dataclasses.field()
. Defaults to()
.**kwargs (Any) -- 接受任何其他关键字以便允许可能的未来扩展。
Type checkers recognize the following optional parameters on field specifiers:
¶ Parameter name
描述
init
Indicates whether the field should be included in the synthesized
__init__
method. If unspecified,init
defaults toTrue
.default
Provides the default value for the field.
default_factory
Provides a runtime callback that returns the default value for the field. If neither
default
nordefault_factory
are specified, the field is assumed to have no default value and must be provided a value when the class is instantiated.factory
An alias for the
default_factory
parameter on field specifiers.kw_only
Indicates whether the field should be marked as keyword-only. If
True
, the field will be keyword-only. IfFalse
, it will not be keyword-only. If unspecified, the value of thekw_only
parameter on the object decorated withdataclass_transform
will be used, or if that is unspecified, the value ofkw_only_default
ondataclass_transform
will be used.alias
Provides an alternative name for the field. This alternative name is used in the synthesized
__init__
method.在运行时,该装饰器会将其参数记录到被装饰对象的
__dataclass_transform__
属性。 它没有其他的运行时影响。更多细节请参见 PEP 681。
3.11 新版功能.
- @typing.overload¶
Decorator for creating overloaded functions and methods.
The
@overload
decorator allows describing functions and methods that support multiple different combinations of argument types. A series of@overload
-decorated definitions must be followed by exactly one non-@overload
-decorated definition (for the same function/method).@overload
-decorated definitions are for the benefit of the type checker only, since they will be overwritten by the non-@overload
-decorated definition. The non-@overload
-decorated definition, meanwhile, will be used at runtime but should be ignored by a type checker. At runtime, calling an@overload
-decorated function directly will raiseNotImplementedError
.An example of overload that gives a more precise type than can be expressed using a union or a type variable:
@overload def process(response: None) -> None: ... @overload def process(response: int) -> tuple[int, str]: ... @overload def process(response: bytes) -> str: ... def process(response): ... # actual implementation goes here
请参阅 PEP 484 了解更多细节以及与其他类型语义的比较。
在 3.11 版更改: 过载的函数现在可以使用
get_overloads()
在运行时进行内省。
- typing.get_overloads(func)¶
Return a sequence of
@overload
-decorated definitions for func.func is the function object for the implementation of the overloaded function. For example, given the definition of
process
in the documentation for@overload
,get_overloads(process)
will return a sequence of three function objects for the three defined overloads. If called on a function with no overloads,get_overloads()
returns an empty sequence.get_overloads()
可被用来在运行时内省一个过载函数。3.11 新版功能.
- typing.clear_overloads()¶
Clear all registered overloads in the internal registry.
This can be used to reclaim the memory used by the registry.
3.11 新版功能.
- @typing.final¶
Decorator to indicate final methods and final classes.
Decorating a method with
@final
indicates to a type checker that the method cannot be overridden in a subclass. Decorating a class with@final
indicates that it cannot be subclassed.例如:
class Base: @final def done(self) -> None: ... class Sub(Base): def done(self) -> None: # Error reported by type checker ... @final class Leaf: ... class Other(Leaf): # Error reported by type checker ...
这些属性没有运行时检查。详见 PEP 591。
3.8 新版功能.
在 3.11 版更改: The decorator will now attempt to set a
__final__
attribute toTrue
on the decorated object. Thus, a check likeif getattr(obj, "__final__", False)
can be used at runtime to determine whether an objectobj
has been marked as final. If the decorated object does not support setting attributes, the decorator returns the object unchanged without raising an exception.
- @typing.no_type_check¶
标明注解不是类型提示的装饰器。
This works as a class or function decorator. With a class, it applies recursively to all methods and classes defined in that class (but not to methods defined in its superclasses or subclasses). Type checkers will ignore all annotations in a function or class with this decorator.
@no_type_check
mutates the decorated object in place.
- @typing.no_type_check_decorator¶
让其他装饰器具有
no_type_check()
效果的装饰器。本装饰器用
no_type_check()
里的装饰函数打包其他装饰器。
- @typing.type_check_only¶
Decorator to mark a class or function as unavailable at runtime.
在运行时,该装饰器本身不可用。实现返回的是私有类实例时,它主要是用于标记在类型存根文件中定义的类。
@type_check_only class Response: # private or not available at runtime code: int def get_header(self, name: str) -> str: ... def fetch_response() -> Response: ...
注意,建议不要返回私有类实例,最好将之设为公共类。
内省辅助器¶
- typing.get_type_hints(obj, globalns=None, localns=None, include_extras=False)¶
返回函数、方法、模块、类对象的类型提示的字典。
这往往与
obj.__annotations__
相同。 此外,编码为字符串字面值的前向引用是通过在globals
与locals
命名空间中执行求值来处理的。 对于一个类C
,则返回一个由所有__annotations__
与C.__mro__
逆序合并所构建的字典。The function recursively replaces all
Annotated[T, ...]
withT
, unlessinclude_extras
is set toTrue
(seeAnnotated
for more information). For example:class Student(NamedTuple): name: Annotated[str, 'some marker'] assert get_type_hints(Student) == {'name': str} assert get_type_hints(Student, include_extras=False) == {'name': str} assert get_type_hints(Student, include_extras=True) == { 'name': Annotated[str, 'some marker'] }
备注
get_type_hints()
在导入的 类型别名 中不工作,包括前向引用。启用注解的延迟评估( PEP 563 )可能会消除对大多数前向引用的需要。在 3.9 版更改: Added
include_extras
parameter as part of PEP 593. See the documentation onAnnotated
for more information.在 3.11 版更改: 在之前,如果设置了等于
None
的默认值则会为函数和方法标注添加Optional[t]
。 现在标注将被不加修改地返回。
- typing.get_origin(tp)¶
Get the unsubscripted version of a type: for a typing object of the form
X[Y, Z, ...]
returnX
.If
X
is a typing-module alias for a builtin orcollections
class, it will be normalized to the original class. IfX
is an instance ofParamSpecArgs
orParamSpecKwargs
, return the underlyingParamSpec
. ReturnNone
for unsupported objects.示例:
assert get_origin(str) is None assert get_origin(Dict[str, int]) is dict assert get_origin(Union[int, str]) is Union P = ParamSpec('P') assert get_origin(P.args) is P assert get_origin(P.kwargs) is P
3.8 新版功能.
- typing.get_args(tp)¶
Get type arguments with all substitutions performed: for a typing object of the form
X[Y, Z, ...]
return(Y, Z, ...)
.If
X
is a union orLiteral
contained in another generic type, the order of(Y, Z, ...)
may be different from the order of the original arguments[Y, Z, ...]
due to type caching. Return()
for unsupported objects.示例:
assert get_args(int) == () assert get_args(Dict[int, str]) == (int, str) assert get_args(Union[int, str]) == (int, str)
3.8 新版功能.
- typing.is_typeddict(tp)¶
检查一个类型是否为
TypedDict
。例如:
class Film(TypedDict): title: str year: int assert is_typeddict(Film) assert not is_typeddict(list | str) # TypedDict is a factory for creating typed dicts, # not a typed dict itself assert not is_typeddict(TypedDict)
3.10 新版功能.
- class typing.ForwardRef¶
Class used for internal typing representation of string forward references.
For example,
List["SomeClass"]
is implicitly transformed intoList[ForwardRef("SomeClass")]
.ForwardRef
should not be instantiated by a user, but may be used by introspection tools.备注
PEP 585 泛型类型例如
list["SomeClass"]
将不会被隐式地转换为list[ForwardRef("SomeClass")]
因而将不会自动解析为list[SomeClass]
。3.7.4 新版功能.
常量¶
- typing.TYPE_CHECKING¶
A special constant that is assumed to be
True
by 3rd party static type checkers. It isFalse
at runtime.用法:
if TYPE_CHECKING: import expensive_mod def fun(arg: 'expensive_mod.SomeType') -> None: local_var: expensive_mod.AnotherType = other_fun()
第一个类型注解必须用引号标注,才能把它当作“前向引用”,从而在解释器运行时中隐藏
expensive_mod
引用。局部变量的类型注释不会被评估,因此,第二个注解不需要用引号引起来。备注
使用
from __future__ import
时,函数定义时不处理注解, 而是把注解当作字符串存在__annotations__
里,这样就不必为注解使用引号。(详见 PEP 563)。3.5.2 新版功能.
已弃用的别名¶
This module defines several deprecated aliases to pre-existing
standard library classes. These were originally included in the typing
module in order to support parameterizing these generic classes using []
.
However, the aliases became redundant in Python 3.9 when the
corresponding pre-existing classes were enhanced to support []
(see
PEP 585).
The redundant types are deprecated as of Python 3.9. However, while the aliases may be removed at some point, removal of these aliases is not currently planned. As such, no deprecation warnings are currently issued by the interpreter for these aliases.
If at some point it is decided to remove these deprecated aliases, a deprecation warning will be issued by the interpreter for at least two releases prior to removal. The aliases are guaranteed to remain in the typing module without deprecation warnings until at least Python 3.14.
Type checkers are encouraged to flag uses of the deprecated types if the program they are checking targets a minimum Python version of 3.9 or newer.
Aliases to built-in types¶
- class typing.Dict(dict, MutableMapping[KT, VT])¶
Deprecated alias to
dict
.Note that to annotate arguments, it is preferred to use an abstract collection type such as
Mapping
rather than to usedict
ortyping.Dict
.该类型用法如下:
def count_words(text: str) -> Dict[str, int]: ...
3.9 版后已移除:
builtins.dict
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.List(list, MutableSequence[T])¶
Deprecated alias to
list
.Note that to annotate arguments, it is preferred to use an abstract collection type such as
Sequence
orIterable
rather than to uselist
ortyping.List
.该类型用法如下:
T = TypeVar('T', int, float) def vec2(x: T, y: T) -> List[T]: return [x, y] def keep_positives(vector: Sequence[T]) -> List[T]: return [item for item in vector if item > 0]
3.9 版后已移除:
builtins.list
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Set(set, MutableSet[T])¶
Deprecated alias to
builtins.set
.Note that to annotate arguments, it is preferred to use an abstract collection type such as
AbstractSet
rather than to useset
ortyping.Set
.3.9 版后已移除:
builtins.set
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.FrozenSet(frozenset, AbstractSet[T_co])¶
Deprecated alias to
builtins.frozenset
.3.9 版后已移除:
builtins.frozenset
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- typing.Tuple¶
Deprecated alias for
tuple
.tuple
andTuple
are special-cased in the type system; see Annotating tuples for more details.3.9 版后已移除:
builtins.tuple
现在支持下标操作([]
)。参见 PEP 585 和 GenericAlias 类型。
- class typing.Type(Generic[CT_co])¶
Deprecated alias to
type
.See 类对象 的类型 for details on using
type
ortyping.Type
in type annotations.3.5.2 新版功能.
3.9 版后已移除:
builtins.type
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
Aliases to types in collections
¶
- class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])¶
Deprecated alias to
collections.defaultdict
.3.5.2 新版功能.
3.9 版后已移除:
collections.defaultdict
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])¶
Deprecated alias to
collections.OrderedDict
.3.7.2 新版功能.
3.9 版后已移除:
collections.OrderedDict
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.ChainMap(collections.ChainMap, MutableMapping[KT, VT])¶
Deprecated alias to
collections.ChainMap
.3.5.4 新版功能.
3.6.1 新版功能.
3.9 版后已移除:
collections.ChainMap
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Counter(collections.Counter, Dict[T, int])¶
Deprecated alias to
collections.Counter
.3.5.4 新版功能.
3.6.1 新版功能.
3.9 版后已移除:
collections.Counter
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Deque(deque, MutableSequence[T])¶
Deprecated alias to
collections.deque
.3.5.4 新版功能.
3.6.1 新版功能.
3.9 版后已移除:
collections.deque
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
Aliases to other concrete types¶
- class typing.Pattern¶
- class typing.Match¶
Deprecated aliases corresponding to the return types from
re.compile()
andre.match()
.These types (and the corresponding functions) are generic over
AnyStr
.Pattern
can be specialised asPattern[str]
orPattern[bytes]
;Match
can be specialised asMatch[str]
orMatch[bytes]
.从 3.8 版起不建议使用,将在 3.13 版中移除:
typing.re
命名空间已被弃用并将被删除。 这些类型应该被直接从typing
导入。3.9 版后已移除:
re
模块中的Pattern
与Match
类现已支持[]
。详见 PEP 585 与 GenericAlias 类型。
- class typing.Text¶
Deprecated alias for
str
.Text
is provided to supply a forward compatible path for Python 2 code: in Python 2,Text
is an alias forunicode
.使用
Text
时,值中必须包含 unicode 字符串,以兼容 Python 2 和 Python 3:def add_unicode_checkmark(text: Text) -> Text: return text + u' \u2713'
3.5.2 新版功能.
3.11 版后已移除: Python 2 已不再受支持,并且大部分类型检查器也都不再支持 Python 2 代码的类型检查。 目录还没有移除该别名的计划,但建议用户使用
str
来代替Text
。
Aliases to container ABCs in collections.abc
¶
- class typing.AbstractSet(Collection[T_co])¶
Deprecated alias to
collections.abc.Set
.3.9 版后已移除:
collections.abc.Set
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.ByteString(Sequence[int])¶
该类型代表了
bytes
、bytearray
、memoryview
等字节序列类型。从 3.9 版起不建议使用,将在 3.14 版中移除: Prefer
typing_extensions.Buffer
, or a union likebytes | bytearray | memoryview
.
- class typing.Collection(Sized, Iterable[T_co], Container[T_co])¶
collections.abc.Collection
的已被弃用的别名。3.6.0 新版功能.
3.9 版后已移除:
collections.abc.Collection
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Container(Generic[T_co])¶
collections.abc.Container
的已被弃用的别名。3.9 版后已移除:
collections.abc.Container
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.ItemsView(MappingView, AbstractSet[tuple[KT_co, VT_co]])¶
collections.abc.ItemsView
的已被弃用的别名。3.9 版后已移除:
collections.abc.ItemsView
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.KeysView(MappingView, AbstractSet[KT_co])¶
collections.abc.KeysView
的已被弃用的别名。3.9 版后已移除:
collections.abc.KeysView
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Mapping(Collection[KT], Generic[KT, VT_co])¶
collections.abc.Mapping
的已被弃用的别名。该类型用法如下:
def get_position_in_index(word_list: Mapping[str, int], word: str) -> int: return word_list[word]
3.9 版后已移除:
collections.abc.Mapping
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.MappingView(Sized)¶
collections.abc.MappingView
的已被弃用的别名。3.9 版后已移除:
collections.abc.MappingView
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.MutableMapping(Mapping[KT, VT])¶
collections.abc.MutableMapping
的已被弃用的别名。3.9 版后已移除:
collections.abc.MutableMapping
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.MutableSequence(Sequence[T])¶
collections.abc.MutableSequence
的已被弃用的别名。3.9 版后已移除:
collections.abc.MutableSequence
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.MutableSet(AbstractSet[T])¶
collections.abc.MutableSet
的已被弃用的别名。3.9 版后已移除:
collections.abc.MutableSet
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Sequence(Reversible[T_co], Collection[T_co])¶
collections.abc.Sequence
的已被弃用的别名。3.9 版后已移除:
collections.abc.Sequence
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.ValuesView(MappingView, Collection[_VT_co])¶
collections.abc.ValuesView
的已被弃用的别名。3.9 版后已移除:
collections.abc.ValuesView
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
collections.abc
中异步 ABC 的别名¶
- class typing.Coroutine(Awaitable[ReturnType], Generic[YieldType, SendType, ReturnType])¶
collections.abc.Coroutine
的已被弃用的别名。类型变量的变化形式和顺序与
Generator
的相对应,例如:from collections.abc import Coroutine c: Coroutine[list[str], str, int] # Some coroutine defined elsewhere x = c.send('hi') # Inferred type of 'x' is list[str] async def bar() -> None: y = await c # Inferred type of 'y' is int
3.5.3 新版功能.
3.9 版后已移除:
collections.abc.Coroutine
现在支持下标操作([]
)。参见 PEP 585 和 GenericAlias 类型。
- class typing.AsyncGenerator(AsyncIterator[YieldType], Generic[YieldType, SendType])¶
collections.abc.AsyncGenerator
的已被弃用的别名。异步生成器可由泛型类型
AsyncGenerator[YieldType, SendType]
注解。例如:async def echo_round() -> AsyncGenerator[int, float]: sent = yield 0 while sent >= 0.0: rounded = await round(sent) sent = yield rounded
与常规生成器不同,异步生成器不能返回值,因此没有
ReturnType
类型参数。 与Generator
类似,SendType
也属于逆变行为。如果生成器只产生值,可将
SendType
设置为None
:async def infinite_stream(start: int) -> AsyncGenerator[int, None]: while True: yield start start = await increment(start)
此外,可用
AsyncIterable[YieldType]
或AsyncIterator[YieldType]
注解生成器的返回类型:async def infinite_stream(start: int) -> AsyncIterator[int]: while True: yield start start = await increment(start)
3.6.1 新版功能.
3.9 版后已移除:
collections.abc.AsyncGenerator
现在支持下标操作([]
)。参见 PEP 585 和 GenericAlias 类型。
- class typing.AsyncIterable(Generic[T_co])¶
collections.abc.AsyncIterable
的已被弃用的别名。3.5.2 新版功能.
3.9 版后已移除:
collections.abc.AsyncIterable
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.AsyncIterator(AsyncIterable[T_co])¶
collections.abc.AsyncIterator
的已被弃用的别名。3.5.2 新版功能.
3.9 版后已移除:
collections.abc.AsyncIterator
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Awaitable(Generic[T_co])¶
collections.abc.Awaitable
的已被弃用的别名。3.5.2 新版功能.
3.9 版后已移除:
collections.abc.Awaitable
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
collections.abc
中其他 ABC 的别名¶
- class typing.Iterable(Generic[T_co])¶
collections.abc.Iterable
的已被弃用的别名3.9 版后已移除:
collections.abc.Iterable
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Iterator(Iterable[T_co])¶
collections.abc.Iterator
的已被弃用的别名。3.9 版后已移除:
collections.abc.Iterator
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- typing.Callable¶
collections.abc.Callable
的已被弃用的别名。有关如何在类型标注中使用
collections.abc.Callable
和typing.Callable
的详细信息请参阅 标注可调用对象。3.9 版后已移除:
collections.abc.Callable
现在支持下标操作([]
)。参见 PEP 585 和 GenericAlias 类型。在 3.10 版更改:
Callable
现在支持ParamSpec
和Concatenate
。 详情见 PEP 612。
- class typing.Generator(Iterator[YieldType], Generic[YieldType, SendType, ReturnType])¶
collections.abc.Generator
的已被弃用的别名。生成器可以由泛型类型
Generator[YieldType, SendType, ReturnType]
注解。例如:def echo_round() -> Generator[int, float, str]: sent = yield 0 while sent >= 0: sent = yield round(sent) return 'Done'
注意,与 typing 模块里的其他泛型不同,
Generator
的SendType
属于逆变行为,不是协变行为,也是不变行为。如果生成器只产生值,可将
SendType
与ReturnType
设为None
:def infinite_stream(start: int) -> Generator[int, None, None]: while True: yield start start += 1
此外,还可以把生成器的返回类型注解为
Iterable[YieldType]
或Iterator[YieldType]
:def infinite_stream(start: int) -> Iterator[int]: while True: yield start start += 1
3.9 版后已移除:
collections.abc.Generator
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Hashable¶
Alias to
collections.abc.Hashable
.
- class typing.Reversible(Iterable[T_co])¶
collections.abc.Reversible
的已被弃用的别名。3.9 版后已移除:
collections.abc.Reversible
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.Sized¶
Alias to
collections.abc.Sized
.
contextlib
ABC 的别名¶
- class typing.ContextManager(Generic[T_co])¶
contextlib.AbstractContextManager
的已被弃用的别名。3.5.4 新版功能.
3.6.0 新版功能.
3.9 版后已移除:
contextlib.AbstractContextManager
现在支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
- class typing.AsyncContextManager(Generic[T_co])¶
contextlib.AbstractAsyncContextManager
的已被弃用的别名。3.5.4 新版功能.
3.6.2 新版功能.
3.9 版后已移除:
contextlib.AbstractAsyncContextManager
现在 支持下标操作 ([]
)。 参见 PEP 585 和 GenericAlias 类型。
主要特性的弃用时间线¶
typing
的特定特性被弃用,并且可能在将来的 Python 版本中被移除。下表总结了主要的弃用特性。该表可能会被更改,请注意部分弃用特性可能并未在此列出。
特性 |
弃用于 |
计划移除 |
PEP/问题 |
---|---|---|---|
|
3.8 |
3.13 |
|
标准多项集的 |
3.9 |
Undecided (see 已弃用的别名 for more information) |
|
3.9 |
3.14 |
||
3.11 |
未确定 |