开源中国

我们不支持 IE 10 及以下版本浏览器

It appears you’re using an unsupported browser

为了获得更好的浏览体验,我们强烈建议您使用较新版本的 Chrome、 Firefox、 Safari 等,或者升级到最新版本的IE浏览器。 如果您使用的是 IE 11 或以上版本,请关闭“兼容性视图”。
GraphPipe首页、文档和下载 - 深度学习模型部署框架 - 开源中国社区
全部项目分类
UPL
C/C++ 查看源码»
跨平台
Oracle
分享
收藏
11 人收藏
收录时间:2018-08-16
GraphPipe 详细介绍

GraphPipe 是甲骨文开源的通用深度学习模型部署框架。官方对 GraphPipe 的定义为,这是一种协议和软件集合,旨在简化机器学习模型部署并将其与特定于框架的模型实现分离。

甲骨文表示,这一新工具可提供跨深度学习框架的模型通用 API、开箱即用的部署方案以及强大的性能。

GraphPipe 为在网络上传递张量数据(tensor data)提供了一个标准、高性能的协议,以及提供了客户端和服务器的简单实现,因而使得从任何框架部署和查询机器学习模型变得轻而易举。GraphPipe 的高性能服务器支持 TensorFlow、PyTorch、MXNet、CNTK 和 Caffe2。

GraphPipe 包括

  • 一组 flatbuffer 定义

  • 根据 flatbuffer 定义一致的模型的指南

  • 来自各种机器学习框架的模型的示例

  • 用于通过 GraphPipe 查询模型的客户端库

GraphPipe 功能特性

  • 基于 flatbuffers 的极简机器学习传输规范

  • 适用于 TensorflowCaffe2 和 ONNX 的简单高效参考模型服务器(reference model servers)

  • Go,Python 和 Java 的高效客户端实现

使用这些工具,企业应该可跨多个服务器进行模型的部署,或者使用通用协议从不同的框架创建模型集合。GraphPipe 可以帮助为依赖远程运行模型的物联网应用程序部署机器学习。

GraphPipe

选择将代码托管在码云
你还在等什么

可能是中国最大最好的代码托管平台


大家对 GraphPipe 的评论 (全部 1 条评论)
{{repayCom.userName}}
DGWIT
居然不支持dl4j
顶部